PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3081.
Published online 2009 November 14. doi:  10.1107/S1600536809045978
PMCID: PMC2972116

N,N-Bis(diphenyl­phosphino)ethyl­amine

Abstract

In the title compound, C26H25NP2, the diphenyl­phosphino groups are staggered relative to the PNP backbone, even though the ethyl substituent coordinated to the N atom is not sterically bulky. The N atom adapts an almost planar geometry with two P atoms and a C atom of the allyl group attached to it in order to accommodate the steric bulk of the phenyl groups and the alkyl group. The distortion of the trigonal-pyramidal geometry of the nitro­gen is further illustrated by the bond angles which range between 114.0 (1) and 123.7 (1)°. There are no classical inter­molecular inter­actions.

Related literature

For similar diphosphineamine non-coordinated ligands with the P—N—P angle ranging between 113.3 (2) and 122.8 (3)°, see: Keat et al. (1981 [triangle]); Cotton et al. (1996 [triangle]); Fei et al. (2003 [triangle]); Cloete et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3081-scheme1.jpg

Experimental

Crystal data

  • C26H25NP2
  • M r = 413.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3081-efi1.jpg
  • a = 9.570 (5) Å
  • b = 13.441 (5) Å
  • c = 16.907 (5) Å
  • β = 91.647 (5)°
  • V = 2173.9 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 101 K
  • 0.39 × 0.13 × 0.11 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.964, T max = 0.975
  • 25117 measured reflections
  • 5401 independent reflections
  • 4293 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.094
  • S = 1.06
  • 5401 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SIR97 (Altomare et al., 1999 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045978/pv2223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045978/pv2223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (NRF), the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Dr A. J. Muller is also gratefully acknowledged for the collection of the crystallographic data. Part of this material is based on work supported by the South African National Research Foundation (GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

supplementary crystallographic information

Comment

The crystal structure of the title compound, (I), is presented in Figure 1. All bond distances and angles in (I) are normal and fall within the range reported for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008)]. The distance of N1 from the P1—P2—C1 plane is 0.023 (1) Å. The geometry around the phosphorous ligands are distorted from tetrahedral geometry with C—P—C angles being the most distorted (varying from 100.36 (7) to 105.6 (1)°). The P1—N1—P2 angle (123.6 (1)°) is slightly larger than that of other similar compounds quoted above which ranges between 113.3 (2) and 122.8 (3)°. There are no classical intermolecular interactions.

Two conformers are generally found for diphosphineamines and are described (Keat et al., 1981) as C2v and Cs. In C2v conformer, the phosphorous lone pairs are cis with respect to the N—C bond while in the Cs conformer the two lone pairs are trans relative to the N—C bond. It has been postulated (Keat et al., 1981) that the Cs conformer is usually observed for diphoshineamines with relatively bulky substituents on the nitrogen atom. The title compound (I), however has a Cs conformer in solid state even though the ethyl group is not particularly bulky.

Experimental

Ethylpropylamine (0.010 mol, 0.45 g) was dissolved in dichloromethane (30 ml) and placed on an ice bath and triethylamine (0.030 mol, 4.22 ml) was added to the solution while being stirred. Chlorodiphenylphosphine (0.020 mol, 3.62 ml) was slowly added to the reaction mixture. The ice bath was removed after 30 minutes and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. The product was recrystallized from methanol. Single colourless crystals were obtained (yield 2.439 g, 59.0%) the next day which were suitable for X-ray crystallography.

Refinement

The methylene, methyl and aryl H atoms were placed in geometrically idealized positions with distances C—H = 0.99 0.98 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C-non-methyl).

Figures

Fig. 1.
View of (I) (50% probability displacement ellipsoids). H-atoms were omitted for clarity.
Fig. 2.
Perspective view of the unit cell of (I) along the a axis.

Crystal data

C26H25NP2F(000) = 872
Mr = 413.44Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5486 reflections
a = 9.570 (5) Åθ = 2.6–27.9°
b = 13.441 (5) ŵ = 0.21 mm1
c = 16.907 (5) ÅT = 101 K
β = 91.647 (5)°Needle, colourless
V = 2173.9 (15) Å30.39 × 0.13 × 0.11 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer4293 reflections with I > 2σ(I)
ω and [var phi] scansRint = 0.046
Absorption correction: multi-scan (SADABS; Bruker, 2004)θmax = 28.3°, θmin = 1.9°
Tmin = 0.964, Tmax = 0.975h = −12→12
25117 measured reflectionsk = −17→17
5401 independent reflectionsl = −22→22

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038w = 1/[σ2(Fo2) + (0.0363P)2 + 0.8849P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.43 e Å3
5401 reflectionsΔρmin = −0.26 e Å3
262 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.35096 (13)0.21232 (9)0.71479 (7)0.0155 (3)
P10.41307 (4)0.09328 (3)0.72417 (2)0.01616 (10)
P20.29406 (4)0.26318 (3)0.62672 (2)0.01542 (10)
C10.34840 (16)0.28240 (11)0.78268 (8)0.0177 (3)
H1A0.39530.34510.76780.021*
H1B0.4020.25320.82790.021*
C20.20138 (17)0.30599 (14)0.80843 (9)0.0250 (4)
H2A0.20590.35230.85320.037*
H2B0.15510.24450.82450.037*
H2C0.14830.33640.76430.037*
C110.32088 (16)0.04094 (11)0.80923 (9)0.0174 (3)
C120.22044 (17)−0.03189 (12)0.79329 (9)0.0201 (3)
H120.2041−0.05320.74030.024*
C130.14338 (17)−0.07416 (12)0.85343 (10)0.0230 (3)
H13A0.0756−0.12390.84130.028*
C140.16600 (17)−0.04328 (12)0.93092 (9)0.0234 (4)
H140.1126−0.07080.9720.028*
C150.26699 (17)0.02804 (12)0.94820 (9)0.0231 (4)
H150.28320.04881.00140.028*
C160.34485 (17)0.06956 (12)0.88827 (9)0.0206 (3)
H160.41470.11760.9010.025*
C210.58795 (16)0.11232 (11)0.76925 (8)0.0169 (3)
C220.65088 (16)0.03565 (12)0.81394 (9)0.0193 (3)
H220.5985−0.02240.82520.023*
C230.78758 (16)0.04296 (12)0.84186 (9)0.0203 (3)
H230.8288−0.01040.87110.024*
C240.86469 (17)0.12790 (13)0.82738 (9)0.0215 (3)
H240.9580.13370.84750.026*
C250.80438 (17)0.20455 (12)0.78320 (9)0.0220 (3)
H250.85680.2630.77320.026*
C260.66815 (16)0.19654 (12)0.75358 (9)0.0196 (3)
H260.6290.24880.72230.024*
C310.13695 (15)0.19368 (11)0.59763 (8)0.0167 (3)
C320.07951 (17)0.20898 (13)0.52136 (9)0.0222 (3)
H320.12420.25310.48620.027*
C33−0.04139 (18)0.16056 (14)0.49693 (10)0.0279 (4)
H33−0.0780.17040.44470.034*
C34−0.10978 (18)0.09766 (13)0.54801 (10)0.0277 (4)
H34−0.19270.06420.53090.033*
C35−0.05620 (17)0.08398 (13)0.62401 (10)0.0248 (4)
H35−0.10320.04170.65950.03*
C360.06593 (16)0.13174 (12)0.64867 (9)0.0196 (3)
H360.10150.1220.70110.024*
C410.41629 (16)0.21875 (11)0.55304 (8)0.0161 (3)
C420.52940 (16)0.28007 (12)0.53709 (9)0.0205 (3)
H420.54380.33940.56680.025*
C430.62142 (17)0.25524 (13)0.47801 (10)0.0247 (4)
H430.69840.29740.46760.03*
C440.60062 (17)0.16908 (13)0.43447 (9)0.0234 (4)
H440.66310.15240.39390.028*
C450.48928 (17)0.10702 (12)0.44978 (9)0.0201 (3)
H450.47550.04770.420.024*
C460.39761 (16)0.13181 (12)0.50904 (9)0.0184 (3)
H460.32140.0890.51960.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0194 (6)0.0161 (6)0.0110 (6)0.0014 (5)−0.0010 (5)−0.0018 (5)
P10.0210 (2)0.01536 (19)0.01218 (18)−0.00001 (16)0.00139 (15)−0.00045 (14)
P20.0176 (2)0.0164 (2)0.01224 (18)0.00027 (15)0.00057 (15)−0.00007 (14)
C10.0223 (8)0.0177 (7)0.0130 (7)0.0001 (6)−0.0008 (6)−0.0030 (6)
C20.0246 (9)0.0316 (9)0.0187 (8)0.0050 (7)0.0009 (7)−0.0062 (7)
C110.0200 (8)0.0170 (7)0.0152 (7)0.0025 (6)0.0012 (6)0.0014 (6)
C120.0239 (8)0.0180 (8)0.0185 (7)0.0004 (6)−0.0001 (6)−0.0010 (6)
C130.0209 (8)0.0202 (8)0.0280 (8)−0.0029 (7)0.0021 (7)0.0012 (7)
C140.0227 (8)0.0242 (8)0.0238 (8)0.0040 (7)0.0080 (7)0.0053 (7)
C150.0288 (9)0.0249 (9)0.0159 (7)0.0021 (7)0.0045 (7)0.0009 (6)
C160.0245 (8)0.0207 (8)0.0165 (7)−0.0019 (7)0.0004 (6)0.0002 (6)
C210.0197 (8)0.0190 (7)0.0122 (7)0.0023 (6)0.0042 (6)−0.0009 (6)
C220.0236 (8)0.0170 (8)0.0176 (7)0.0008 (6)0.0046 (6)0.0004 (6)
C230.0226 (8)0.0223 (8)0.0161 (7)0.0062 (7)0.0047 (6)0.0030 (6)
C240.0166 (8)0.0264 (8)0.0217 (8)0.0028 (7)0.0031 (6)0.0004 (7)
C250.0203 (8)0.0205 (8)0.0254 (8)−0.0004 (6)0.0068 (7)0.0029 (7)
C260.0211 (8)0.0198 (8)0.0183 (7)0.0037 (6)0.0050 (6)0.0035 (6)
C310.0162 (7)0.0191 (7)0.0148 (7)0.0029 (6)0.0003 (6)−0.0018 (6)
C320.0198 (8)0.0309 (9)0.0159 (7)0.0022 (7)0.0006 (6)0.0031 (6)
C330.0218 (9)0.0420 (11)0.0197 (8)0.0015 (8)−0.0055 (7)−0.0016 (7)
C340.0195 (8)0.0311 (10)0.0323 (9)−0.0035 (7)−0.0039 (7)−0.0043 (8)
C350.0221 (8)0.0249 (9)0.0274 (9)−0.0031 (7)0.0025 (7)0.0013 (7)
C360.0184 (8)0.0235 (8)0.0169 (7)0.0018 (6)−0.0005 (6)−0.0004 (6)
C410.0173 (7)0.0195 (7)0.0114 (6)0.0021 (6)−0.0006 (6)0.0024 (6)
C420.0191 (8)0.0228 (8)0.0193 (7)−0.0019 (6)−0.0012 (6)0.0011 (6)
C430.0180 (8)0.0301 (9)0.0262 (8)−0.0014 (7)0.0049 (7)0.0053 (7)
C440.0198 (8)0.0344 (10)0.0159 (7)0.0093 (7)0.0031 (6)0.0063 (7)
C450.0236 (8)0.0235 (8)0.0132 (7)0.0073 (7)−0.0007 (6)−0.0007 (6)
C460.0186 (8)0.0203 (8)0.0164 (7)−0.0002 (6)0.0012 (6)0.0017 (6)

Geometric parameters (Å, °)

N1—C11.4856 (18)C23—H230.95
N1—P11.7127 (14)C24—C251.388 (2)
N1—P21.7130 (13)C24—H240.95
P1—C211.8369 (18)C25—C261.387 (2)
P1—C111.8478 (15)C25—H250.95
P2—C311.8255 (17)C26—H260.95
P2—C411.8331 (16)C31—C361.391 (2)
C1—C21.518 (2)C31—C321.402 (2)
C1—H1A0.99C32—C331.380 (2)
C1—H1B0.99C32—H320.95
C2—H2A0.98C33—C341.386 (2)
C2—H2B0.98C33—H330.95
C2—H2C0.98C34—C351.382 (2)
C11—C121.393 (2)C34—H340.95
C11—C161.403 (2)C35—C361.387 (2)
C12—C131.394 (2)C35—H350.95
C12—H120.95C36—H360.95
C13—C141.385 (2)C41—C421.393 (2)
C13—H13A0.95C41—C461.394 (2)
C14—C151.386 (2)C42—C431.391 (2)
C14—H140.95C42—H420.95
C15—C161.392 (2)C43—C441.384 (2)
C15—H150.95C43—H430.95
C16—H160.95C44—C451.383 (2)
C21—C261.397 (2)C44—H440.95
C21—C221.403 (2)C45—C461.391 (2)
C22—C231.382 (2)C45—H450.95
C22—H220.95C46—H460.95
C23—C241.385 (2)
C1—N1—P1122.29 (10)C24—C23—H23119.9
C1—N1—P2114.00 (10)C23—C24—C25119.44 (16)
P1—N1—P2123.65 (7)C23—C24—H24120.3
N1—P1—C21102.58 (7)C25—C24—H24120.3
N1—P1—C11104.81 (7)C26—C25—C24120.55 (15)
C21—P1—C11100.36 (7)C26—C25—H25119.7
N1—P2—C31105.59 (7)C24—C25—H25119.7
N1—P2—C41105.52 (7)C25—C26—C21120.67 (15)
C31—P2—C41100.78 (7)C25—C26—H26119.7
N1—C1—C2112.95 (13)C21—C26—H26119.7
N1—C1—H1A109C36—C31—C32118.21 (15)
C2—C1—H1A109C36—C31—P2123.55 (12)
N1—C1—H1B109C32—C31—P2118.08 (12)
C2—C1—H1B109C33—C32—C31120.61 (15)
H1A—C1—H1B107.8C33—C32—H32119.7
C1—C2—H2A109.5C31—C32—H32119.7
C1—C2—H2B109.5C32—C33—C34120.51 (16)
H2A—C2—H2B109.5C32—C33—H33119.7
C1—C2—H2C109.5C34—C33—H33119.7
H2A—C2—H2C109.5C35—C34—C33119.42 (16)
H2B—C2—H2C109.5C35—C34—H34120.3
C12—C11—C16118.04 (14)C33—C34—H34120.3
C12—C11—P1117.34 (11)C34—C35—C36120.32 (15)
C16—C11—P1124.63 (12)C34—C35—H35119.8
C11—C12—C13121.46 (14)C36—C35—H35119.8
C11—C12—H12119.3C35—C36—C31120.88 (15)
C13—C12—H12119.3C35—C36—H36119.6
C14—C13—C12119.74 (15)C31—C36—H36119.6
C14—C13—H13A120.1C42—C41—C46118.76 (14)
C12—C13—H13A120.1C42—C41—P2116.96 (12)
C13—C14—C15119.70 (14)C46—C41—P2124.14 (12)
C13—C14—H14120.2C43—C42—C41120.57 (15)
C15—C14—H14120.2C43—C42—H42119.7
C14—C15—C16120.56 (15)C41—C42—H42119.7
C14—C15—H15119.7C44—C43—C42119.90 (15)
C16—C15—H15119.7C44—C43—H43120.1
C15—C16—C11120.48 (15)C42—C43—H43120.1
C15—C16—H16119.8C45—C44—C43120.33 (14)
C11—C16—H16119.8C45—C44—H44119.8
C26—C21—C22117.87 (15)C43—C44—H44119.8
C26—C21—P1122.22 (12)C44—C45—C46119.69 (15)
C22—C21—P1119.53 (12)C44—C45—H45120.2
C23—C22—C21121.29 (15)C46—C45—H45120.2
C23—C22—H22119.4C45—C46—C41120.75 (14)
C21—C22—H22119.4C45—C46—H46119.6
C22—C23—C24120.15 (15)C41—C46—H46119.6
C22—C23—H23119.9
C1—N1—P1—C21−53.54 (12)C22—C23—C24—C25−1.4 (2)
P2—N1—P1—C21123.41 (9)C23—C24—C25—C26−0.1 (2)
C1—N1—P1—C1150.91 (13)C24—C25—C26—C211.6 (2)
P2—N1—P1—C11−132.13 (9)C22—C21—C26—C25−1.6 (2)
C1—N1—P2—C31−116.42 (11)P1—C21—C26—C25−174.42 (11)
P1—N1—P2—C3166.40 (10)N1—P2—C31—C3614.23 (15)
C1—N1—P2—C41137.38 (10)C41—P2—C31—C36123.86 (13)
P1—N1—P2—C41−39.80 (11)N1—P2—C31—C32−170.32 (12)
P1—N1—C1—C2−111.26 (14)C41—P2—C31—C32−60.70 (13)
P2—N1—C1—C271.52 (15)C36—C31—C32—C33−2.5 (2)
N1—P1—C11—C12109.42 (13)P2—C31—C32—C33−178.19 (13)
C21—P1—C11—C12−144.47 (12)C31—C32—C33—C341.4 (3)
N1—P1—C11—C16−70.44 (15)C32—C33—C34—C350.3 (3)
C21—P1—C11—C1635.67 (15)C33—C34—C35—C36−0.8 (3)
C16—C11—C12—C131.3 (2)C34—C35—C36—C31−0.3 (2)
P1—C11—C12—C13−178.59 (12)C32—C31—C36—C351.9 (2)
C11—C12—C13—C140.3 (2)P2—C31—C36—C35177.36 (12)
C12—C13—C14—C15−1.2 (2)N1—P2—C41—C42−93.59 (13)
C13—C14—C15—C160.6 (2)C31—P2—C41—C42156.74 (12)
C14—C15—C16—C111.0 (2)N1—P2—C41—C4690.85 (14)
C12—C11—C16—C15−1.9 (2)C31—P2—C41—C46−18.82 (14)
P1—C11—C16—C15177.98 (12)C46—C41—C42—C430.4 (2)
N1—P1—C21—C26−32.09 (13)P2—C41—C42—C43−175.41 (12)
C11—P1—C21—C26−139.97 (12)C41—C42—C43—C440.1 (2)
N1—P1—C21—C22155.21 (11)C42—C43—C44—C45−0.5 (2)
C11—P1—C21—C2247.33 (13)C43—C44—C45—C460.3 (2)
C26—C21—C22—C230.2 (2)C44—C45—C46—C410.3 (2)
P1—C21—C22—C23173.18 (11)C42—C41—C46—C45−0.6 (2)
C21—C22—C23—C241.3 (2)P2—C41—C46—C45174.89 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2223).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480. [PMC free article] [PubMed]
  • Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg, Chim. Acta, 252, 251–256.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.
  • Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem Soc. Dalton Trans. pp. 2192–2198.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography