PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3021.
Published online 2009 November 7. doi:  10.1107/S1600536809045942
PMCID: PMC2972112

4-Chloro-2-((E)-{3-[1-(hydroxy­imino)eth­yl]phen­yl}imino­meth­yl)phenol

Li Xua,* and Lei Wua

Abstract

The title compound, C15H13ClN2O2, adopts an E conformation with respect to the azomethine C=N bond. The aniline and phenol rings are almost coplanar, making a dihedral angle of 3.33 (2)°. In the crystal, the mol­ecules lie about inversion centers, forming dimers that are connected by inter­molecular O—H(...)N hydrogen bonds, resulting in six-membered rings with graph-set motif R 2 2(6). In addition, there is a strong inter­molecular O—H(...)N hydrogen-bonding inter­action, resulting in an S(6) ring motif. Weak π–π inter­actions between the benzene rings [centroid–centroid distance = 3.809 (1) Å] further stabilize the crystal structure.

Related literature

For background to Schiff bases, see: Dong et al. (2007 [triangle], 2008 [triangle], 2009 [triangle]); Eltayeb et al. (2008 [triangle]). For related crystal strcutures, see: Butcher et al. (2005 [triangle]); Golovnia et al. (2009 [triangle]); Xu et al. (2008 [triangle]); Rafiq et al. (2008 [triangle]); Zhao et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3021-scheme1.jpg

Experimental

Crystal data

  • C15H13ClN2O2
  • M r = 288.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3021-efi1.jpg
  • a = 16.7139 (16) Å
  • b = 5.9983 (6) Å
  • c = 13.3902 (11) Å
  • β = 96.328 (2)°
  • V = 1334.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 298 K
  • 0.40 × 0.12 × 0.07 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.893, T max = 0.980
  • 6410 measured reflections
  • 2349 independent reflections
  • 1398 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.092
  • S = 1.04
  • 2349 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045942/pv2220sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045942/pv2220Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904–11) and the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff base ligands have numerous applications in chemistry, biology, physics and advanced materials and catalysis (Dong et al., 2007; Dong et al., 2008; Eltayeb et al., 2008). The pressence of Schiff base functional group together with oxime (–C═N—OH) may result in significant increase of chelating efficiency and ability to form polynuclear complexes (Golovnia et al., 2009; Dong et al., 2009; Xu et al., 2008). Owing to the importance of oxime-type compounds, we report in this article the synthesis and crystal structure of the title compound, (I), which contains both the functional groups.

In the structure of the title compound (Fig. 1), the bond lengths and bond angles are in normal ranges and agree well with the coresponding bond lengths and angles reported for the crystal structures related to the title compound, e.g., (Butcher et al., 2005; Golovnia et al., 2009; Xu et al., 2008; Rafiq et al., 2008; Zhao et al., 2009). The molecule of (I) adopts an E conformation with respect to the azomethine C═N bond. The aniline (C3—C8) and phenol rings (C10—C15) are almost coplanar with each other, making a dihedral angle of 3.33 (2)°; the torsion angles O1—N1—C2—C3 and C5—N2—C9—C10 are 178.4 (2) and -178.9 (2)°, respectively. The molecules of (I) lie about inversion centers forming dimers that are connected by intermolecular hydrogen bonds of the type O—H···N resulting in six-membered rings which can be described in graph-set notation as R22(6) motif. In addition, there is a strong intermolecular hydrogen bonding interaction of the type O—H···N resulting in an S(6) ring motif (Table 1). Moreover, weak π–π interactions between the benzene rings (centroid-centroid distance = 3.809 (1) Å) further stabilize the crystal structure (Fig. 2).

Experimental

To an ethanol solution (5 ml) of 3-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 5-chlorinebenzaldehyde (156.8 mg, 1.00 mmol). Immediately, a yellow precipitate was obtained. The mixture solution was stirred at 328–333 K for 5 h. After cooling to room temperature, the precipitate was filtered off, dried in vacuo and purified by recrystallization from ethanol to a solid material. Yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of dichloromethane at room temperature in about two weeks.

Refinement

H atoms were treated in a riding mode with distances C—H = 0.96 Å (CH3), 0.93 Å (CH) and O—H= 0.82 Å. The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Figures

Fig. 1.
The molecule structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Part of the supramolecular structure of the title compound, showing a dimer formed by intermolecular O—H···O and O—H···N hydrogen bonds as well as π–π stacking interactions. ...

Crystal data

C15H13ClN2O2F(000) = 600
Mr = 288.72Dx = 1.437 Mg m3
Monoclinic, P21/cMelting point = 454–456 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.7139 (16) ÅCell parameters from 1148 reflections
b = 5.9983 (6) Åθ = 3.1–25.3°
c = 13.3902 (11) ŵ = 0.29 mm1
β = 96.328 (2)°T = 298 K
V = 1334.3 (2) Å3Needle, yellow
Z = 40.40 × 0.12 × 0.07 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer2349 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→19
Tmin = 0.893, Tmax = 0.980k = −7→7
6410 measured reflectionsl = −15→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0246P)2] where P = (Fo2 + 2Fc2)/3
2349 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Experimental. m. p. 454–456 K. Anal. Calc.: C, 62.40; H, 4.54; N, 9.70. Found: C, 62.10; H, 4.59; N, 9.89.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.47005 (4)−0.34472 (13)0.16802 (5)0.0679 (3)
N10.04965 (12)1.3024 (4)−0.03178 (14)0.0492 (6)
N20.25468 (11)0.4873 (4)0.02923 (14)0.0459 (5)
O10.01107 (10)1.4271 (3)−0.11173 (11)0.0660 (6)
H1−0.01051.5364−0.08950.099*
O20.29783 (10)0.2627 (3)−0.12216 (12)0.0714 (6)
H20.27600.3628−0.09340.107*
C10.08207 (16)1.0646 (5)−0.16879 (17)0.0649 (9)
H1A0.04361.1557−0.20870.097*
H1B0.06700.9107−0.17680.097*
H1C0.13441.0862−0.19030.097*
C20.08394 (13)1.1288 (4)−0.06072 (16)0.0397 (6)
C30.12822 (12)0.9899 (4)0.01858 (16)0.0368 (6)
C40.16997 (12)0.8025 (4)−0.00603 (17)0.0414 (6)
H40.16930.7636−0.07340.050*
C50.21285 (13)0.6705 (4)0.06599 (18)0.0403 (6)
C60.21285 (14)0.7264 (5)0.16624 (18)0.0512 (7)
H60.24060.63890.21590.061*
C70.17157 (15)0.9121 (5)0.19178 (18)0.0552 (8)
H70.17190.94990.25920.066*
C80.12969 (14)1.0435 (4)0.11943 (17)0.0465 (7)
H80.10231.16880.13840.056*
C90.29415 (13)0.3476 (4)0.08762 (19)0.0462 (7)
H90.29480.36510.15670.055*
C100.33755 (13)0.1644 (4)0.04994 (18)0.0410 (6)
C110.33784 (14)0.1268 (5)−0.05337 (19)0.0491 (7)
C120.37878 (14)−0.0525 (5)−0.08613 (19)0.0572 (8)
H120.3789−0.0767−0.15470.069*
C130.41961 (14)−0.1967 (5)−0.0189 (2)0.0547 (7)
H130.4473−0.3176−0.04170.066*
C140.41926 (13)−0.1606 (4)0.08297 (19)0.0459 (7)
C150.37940 (13)0.0169 (4)0.11697 (18)0.0462 (7)
H150.38010.03990.18570.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0726 (5)0.0574 (5)0.0723 (5)0.0192 (4)0.0021 (4)0.0118 (4)
N10.0631 (13)0.0413 (15)0.0398 (12)0.0115 (12)−0.0090 (11)0.0044 (11)
N20.0427 (12)0.0397 (15)0.0543 (13)0.0036 (11)0.0008 (10)0.0030 (11)
O10.0957 (14)0.0518 (14)0.0464 (11)0.0267 (11)−0.0102 (10)0.0062 (9)
O20.0864 (13)0.0763 (16)0.0495 (11)0.0282 (12)−0.0015 (10)0.0080 (10)
C10.086 (2)0.070 (2)0.0373 (15)0.0267 (17)0.0000 (15)0.0016 (14)
C20.0442 (14)0.0391 (17)0.0347 (14)0.0009 (13)−0.0003 (12)0.0000 (12)
C30.0392 (13)0.0343 (17)0.0363 (14)−0.0022 (12)0.0019 (11)0.0010 (12)
C40.0453 (14)0.0431 (18)0.0346 (13)−0.0041 (13)−0.0005 (12)−0.0007 (12)
C50.0395 (14)0.0344 (16)0.0465 (16)−0.0016 (12)0.0023 (12)0.0040 (13)
C60.0591 (16)0.050 (2)0.0437 (16)0.0102 (14)0.0013 (13)0.0107 (13)
C70.0703 (18)0.060 (2)0.0348 (15)0.0112 (16)0.0026 (14)0.0027 (14)
C80.0553 (15)0.0440 (18)0.0404 (15)0.0106 (13)0.0060 (13)0.0005 (13)
C90.0453 (15)0.0417 (18)0.0503 (15)−0.0006 (14)0.0000 (13)−0.0003 (13)
C100.0378 (13)0.0352 (16)0.0495 (16)−0.0004 (12)0.0019 (12)−0.0013 (13)
C110.0448 (15)0.054 (2)0.0474 (17)0.0058 (14)−0.0004 (13)0.0054 (14)
C120.0594 (17)0.068 (2)0.0447 (16)0.0077 (16)0.0070 (14)−0.0040 (15)
C130.0473 (15)0.053 (2)0.0645 (19)0.0076 (14)0.0098 (15)−0.0063 (15)
C140.0397 (14)0.0403 (18)0.0567 (17)0.0044 (13)0.0009 (13)0.0048 (14)
C150.0425 (14)0.0480 (19)0.0465 (15)−0.0007 (13)−0.0016 (12)0.0002 (13)

Geometric parameters (Å, °)

Cl1—C141.739 (2)C5—C61.384 (3)
N1—C21.269 (3)C6—C71.373 (3)
N1—O11.403 (2)C6—H60.9300
N2—C91.279 (3)C7—C81.379 (3)
N2—C51.419 (3)C7—H70.9300
O1—H10.8200C8—H80.9300
O2—C111.351 (3)C9—C101.439 (3)
O2—H20.8200C9—H90.9300
C1—C21.495 (3)C10—C151.393 (3)
C1—H1A0.9600C10—C111.402 (3)
C1—H1B0.9600C11—C121.372 (3)
C1—H1C0.9600C12—C131.375 (3)
C2—C31.482 (3)C12—H120.9300
C3—C41.382 (3)C13—C141.381 (3)
C3—C81.386 (3)C13—H130.9300
C4—C51.385 (3)C14—C151.361 (3)
C4—H40.9300C15—H150.9300
C2—N1—O1112.91 (19)C6—C7—H7119.4
C9—N2—C5122.4 (2)C8—C7—H7119.4
N1—O1—H1109.5C7—C8—C3120.3 (2)
C11—O2—H2109.5C7—C8—H8119.8
C2—C1—H1A109.5C3—C8—H8119.8
C2—C1—H1B109.5N2—C9—C10122.2 (2)
H1A—C1—H1B109.5N2—C9—H9118.9
C2—C1—H1C109.5C10—C9—H9118.9
H1A—C1—H1C109.5C15—C10—C11118.5 (2)
H1B—C1—H1C109.5C15—C10—C9119.8 (2)
N1—C2—C3116.7 (2)C11—C10—C9121.7 (2)
N1—C2—C1123.0 (2)O2—C11—C12118.8 (2)
C3—C2—C1120.3 (2)O2—C11—C10121.4 (2)
C4—C3—C8117.8 (2)C12—C11—C10119.8 (2)
C4—C3—C2120.8 (2)C11—C12—C13120.8 (2)
C8—C3—C2121.4 (2)C11—C12—H12119.6
C3—C4—C5122.4 (2)C13—C12—H12119.6
C3—C4—H4118.8C12—C13—C14119.5 (3)
C5—C4—H4118.8C12—C13—H13120.3
C6—C5—C4118.8 (2)C14—C13—H13120.3
C6—C5—N2125.2 (2)C15—C14—C13120.6 (2)
C4—C5—N2116.0 (2)C15—C14—Cl1120.0 (2)
C7—C6—C5119.5 (2)C13—C14—Cl1119.5 (2)
C7—C6—H6120.3C14—C15—C10120.7 (2)
C5—C6—H6120.3C14—C15—H15119.6
C6—C7—C8121.3 (2)C10—C15—H15119.6
O1—N1—C2—C3178.37 (18)C2—C3—C8—C7−179.7 (2)
O1—N1—C2—C1−0.7 (3)C5—N2—C9—C10−178.9 (2)
N1—C2—C3—C4−177.5 (2)N2—C9—C10—C15−179.8 (2)
C1—C2—C3—C41.6 (3)N2—C9—C10—C11−1.0 (4)
N1—C2—C3—C82.1 (3)C15—C10—C11—O2179.4 (2)
C1—C2—C3—C8−178.8 (2)C9—C10—C11—O20.6 (4)
C8—C3—C4—C5−0.5 (3)C15—C10—C11—C120.1 (4)
C2—C3—C4—C5179.1 (2)C9—C10—C11—C12−178.8 (2)
C3—C4—C5—C61.0 (3)O2—C11—C12—C13−179.3 (2)
C3—C4—C5—N2−178.2 (2)C10—C11—C12—C130.1 (4)
C9—N2—C5—C63.5 (4)C11—C12—C13—C140.1 (4)
C9—N2—C5—C4−177.4 (2)C12—C13—C14—C15−0.5 (4)
C4—C5—C6—C7−0.9 (4)C12—C13—C14—Cl1179.35 (19)
N2—C5—C6—C7178.2 (2)C13—C14—C15—C100.6 (4)
C5—C6—C7—C80.3 (4)Cl1—C14—C15—C10−179.18 (17)
C6—C7—C8—C30.2 (4)C11—C10—C15—C14−0.4 (4)
C4—C3—C8—C7−0.1 (3)C9—C10—C15—C14178.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.872.601 (3)147
O1—H1···N1i0.822.062.789 (3)149

Symmetry codes: (i) −x, −y+3, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2220).

References

  • Butcher, R. J., Bendre, R. S. & Kuwar, A. S. (2005). Acta Cryst. E61, o3511–o3513.
  • Dong, W.-K. & Duan, J.-G. (2008). J. Coord. Chem. 61, 781–788.
  • Dong, W.-K., Duan, J.-G. & Liu, G.-L. (2007). Transition Met. Chem. 32, 702–705.
  • Dong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419–1428.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m570–m571. [PMC free article] [PubMed]
  • Golovnia, E., Prisyazhnaya, E. V., Iskenderov, T. S., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, o2018–o2019. [PMC free article] [PubMed]
  • Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Xu, S.-Q. & Li, J.-M. (2008). Acta Cryst. E64, o1469. [PMC free article] [PubMed]
  • Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography