PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3022.
Published online 2009 November 7. doi:  10.1107/S1600536809045103
PMCID: PMC2972111

(E)-2-[(2,4-Dichloro­phen­yl)imino­meth­yl]benzene-1,4-diol monohydrate

Abstract

The title compound, C13H9Cl2NO2·H2O, represents a Schiff base which adopts the phenol–imine tautomeric form in the solid state. The mol­ecule is approximately planar (r.m.s. deviation 0.0818 Å), and the dihedral angle between the two aromatic rings is 7.46 (12)°. An O—H(...)N inter­action generates an S(6) ring. In the crystal, mol­ecules are linked by inter­molecular O—H(...)O hydrogen bonds involving the solvent water mol­ecule, forming chains.

Related literature

For the biological properties of Schiff bases see: Lozier et al. (1975 [triangle]), Dao et al. (2000 [triangle]). For the coordination chemistry of Schiff bases see: Kargar et al. (2009 [triangle]); Yeap et al. (2009 [triangle]). For a discussion of Schiff bases tautomerism, see: Şahin et al. (2005 [triangle]); Hadjoudis et al. (1987 [triangle]). For a related structure, see: Zhang (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3022-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO2·H2O
  • M r = 300.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3022-efi2.jpg
  • a = 4.6899 (2) Å
  • b = 17.4289 (6) Å
  • c = 16.1645 (7) Å
  • β = 95.923 (3)°
  • V = 1314.23 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 296 K
  • 0.90 × 0.56 × 0.25 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.801, T max = 0.959
  • 11982 measured reflections
  • 2585 independent reflections
  • 1879 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.098
  • S = 0.97
  • 2585 reflections
  • 188 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045103/bh2254sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045103/bh2254Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for providing access to the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized either in keto-amine (N—H···O hydrogen bond) (Şahin et al., 2005) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). The present X-ray investigation shows that the title compound is a Schiff base and exists in the phenol-imine form in the solid-state.

An ORTEP-3 (Farrugia, 1997) plot and crystal packing of the molecule of the title compound are shown in Figs. 1 and 2, respectively. The molecule is approximately planar. The dihedral angle between the two aromatic rings is 7.46 (12)° and the C1—C7—N1—C8 torsion angle is 178.71 (16)°. All bond lengths are within normal values. An intramolecular O2—H2···N1 hydrogen bond (Table 1) is observed and this hydrogen bond produces S(6) ring. The O2···N1 separation of 2.569 (2) Å is comparable to those observed for analogous hydrogen bonds in 2-bromo-4-chloro-6-[(E)-p-tolylimino-methyl]phenol (Zhang, 2009). Molecules are linked into sheets by a combination of O—H···O hydrogen bonds (Table 1). The combination of O—H···O hydrogen bonds generates a chain of edge-fused R66(22) rings running parallel to the [100] direction (Fig. 2).

Experimental

The compound (E)-2-[(2,4-(dichloro)phenylimino)methyl]-4-hydroxyphenol monohydrate was prepared by refluxing a solution containing 2,5-dihydroxybenzaldehyde (0.03 g, 0.22 mmol) in ethanol (20 ml) and 2,4-dichloroaniline (0.035 g, 0.22 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of the title hydrate suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield 73%; m.p. 432–435 K).

Refinement

H atoms bonded to O atoms were located in a difference map and refined freely (distances given in Table 1). All other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H)=1.2Ueq(Carrier C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure, showing the formation R66(22) rings. Hydrogen bonds are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity.

Crystal data

C13H9Cl2NO2·H2OF(000) = 616
Mr = 300.13Dx = 1.517 Mg m3
Monoclinic, P21/cMelting point: 432 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71069 Å
a = 4.6899 (2) ÅCell parameters from 12355 reflections
b = 17.4289 (6) Åθ = 1.3–27.2°
c = 16.1645 (7) ŵ = 0.50 mm1
β = 95.923 (3)°T = 296 K
V = 1314.23 (9) Å3Prism, brown
Z = 40.90 × 0.56 × 0.25 mm

Data collection

Stoe IPDS II diffractometer2585 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
graphiteRint = 0.050
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = −5→5
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −21→21
Tmin = 0.801, Tmax = 0.959l = −19→19
11982 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97w = 1/[σ2(Fo2) + (0.0595P)2] where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.29 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.2010 (4)0.11322 (10)0.62421 (11)0.0455 (4)
C2−0.3504 (4)0.09465 (12)0.54787 (12)0.0540 (5)
H2A−0.30240.05020.52070.065*
C3−0.5665 (4)0.14033 (12)0.51181 (12)0.0556 (5)
C4−0.6388 (4)0.20661 (11)0.55258 (13)0.0554 (5)
H4−0.78510.23800.52870.066*
C5−0.4951 (5)0.22589 (11)0.62805 (13)0.0573 (5)
H5−0.54610.27020.65500.069*
C6−0.2748 (4)0.18020 (11)0.66461 (12)0.0510 (4)
C70.0230 (4)0.06279 (11)0.66080 (12)0.0485 (4)
H70.06400.01800.63310.058*
C80.3792 (4)0.03047 (10)0.76835 (11)0.0467 (4)
C90.4933 (4)0.04822 (11)0.84932 (12)0.0512 (4)
C100.7030 (4)0.00366 (12)0.89192 (13)0.0560 (5)
H110.77480.01620.94600.067*
C110.8040 (4)−0.05934 (11)0.85325 (12)0.0518 (5)
C120.7014 (4)−0.07811 (11)0.77313 (12)0.0547 (5)
H120.7737−0.12050.74730.066*
C130.4907 (4)−0.03366 (11)0.73152 (12)0.0522 (5)
H130.4209−0.04670.67740.063*
N10.1649 (3)0.07852 (9)0.73022 (9)0.0492 (4)
O1−0.6995 (5)0.11940 (12)0.43607 (10)0.0909 (6)
H1−0.848 (8)0.148 (2)0.420 (2)0.121 (12)*
O2−0.1365 (4)0.20076 (10)0.73902 (10)0.0729 (5)
H2−0.007 (7)0.166 (2)0.751 (2)0.105 (10)*
O3−1.1524 (5)0.19928 (14)0.37204 (14)0.0930 (7)
H1O−1.167 (7)0.232 (2)0.333 (2)0.112 (11)*
H2O−1.317 (10)0.200 (3)0.385 (3)0.154 (17)*
Cl11.06563 (11)−0.11630 (3)0.90637 (4)0.06643 (18)
Cl20.36487 (14)0.12696 (4)0.89962 (4)0.0773 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0467 (10)0.0449 (9)0.0457 (10)−0.0009 (8)0.0091 (8)0.0010 (7)
C20.0598 (12)0.0552 (10)0.0472 (10)0.0099 (9)0.0062 (9)−0.0040 (9)
C30.0594 (12)0.0662 (12)0.0413 (10)0.0084 (10)0.0053 (9)0.0013 (9)
C40.0566 (11)0.0518 (11)0.0582 (12)0.0069 (9)0.0081 (10)0.0098 (9)
C50.0635 (12)0.0437 (10)0.0648 (13)0.0071 (9)0.0073 (10)−0.0036 (9)
C60.0541 (11)0.0488 (10)0.0498 (10)−0.0028 (9)0.0045 (9)−0.0059 (8)
C70.0508 (10)0.0473 (10)0.0477 (10)0.0023 (8)0.0068 (9)−0.0016 (8)
C80.0473 (10)0.0477 (10)0.0454 (10)−0.0023 (8)0.0065 (8)0.0031 (8)
C90.0502 (10)0.0521 (10)0.0508 (11)−0.0012 (8)0.0033 (9)−0.0053 (8)
C100.0530 (12)0.0625 (12)0.0507 (11)−0.0034 (9)−0.0031 (9)−0.0027 (9)
C110.0452 (10)0.0530 (10)0.0569 (12)−0.0043 (8)0.0030 (9)0.0063 (8)
C120.0592 (12)0.0493 (10)0.0565 (12)0.0044 (9)0.0107 (10)0.0009 (9)
C130.0607 (11)0.0525 (11)0.0432 (10)0.0021 (9)0.0046 (9)−0.0015 (8)
N10.0502 (8)0.0501 (9)0.0468 (9)0.0016 (7)0.0034 (7)0.0011 (7)
O10.0986 (13)0.1152 (15)0.0533 (9)0.0486 (12)−0.0184 (9)−0.0210 (9)
O20.0780 (11)0.0689 (10)0.0678 (10)0.0162 (9)−0.0120 (8)−0.0241 (8)
O30.0771 (13)0.1106 (15)0.0906 (14)0.0109 (11)0.0047 (11)0.0506 (12)
Cl10.0588 (3)0.0651 (3)0.0733 (4)0.0055 (2)−0.0036 (3)0.0112 (2)
Cl20.0850 (4)0.0770 (4)0.0669 (4)0.0199 (3)−0.0065 (3)−0.0257 (3)

Geometric parameters (Å, °)

C1—C21.393 (3)C8—C91.397 (3)
C1—C61.398 (3)C8—N11.401 (2)
C1—C71.448 (3)C9—C101.380 (3)
C2—C31.371 (3)C9—Cl21.734 (2)
C2—H2A0.9300C10—C111.372 (3)
C3—O11.365 (3)C10—H110.9300
C3—C41.389 (3)C11—C121.374 (3)
C4—C51.373 (3)C11—Cl11.735 (2)
C4—H40.9300C12—C131.375 (3)
C5—C61.388 (3)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—O21.354 (2)O1—H10.87 (4)
C7—N11.274 (2)O2—H20.87 (4)
C7—H70.9300O3—H1O0.85 (4)
C8—C131.393 (3)O3—H2O0.82 (4)
C2—C1—C6118.80 (17)C13—C8—N1125.12 (17)
C2—C1—C7119.88 (16)C9—C8—N1117.89 (16)
C6—C1—C7121.32 (17)C10—C9—C8121.82 (18)
C3—C2—C1121.61 (18)C10—C9—Cl2118.39 (16)
C3—C2—H2A119.2C8—C9—Cl2119.78 (15)
C1—C2—H2A119.2C11—C10—C9119.00 (19)
O1—C3—C2118.39 (18)C11—C10—H11120.5
O1—C3—C4122.44 (19)C9—C10—H11120.5
C2—C3—C4119.16 (19)C10—C11—C12121.10 (19)
C5—C4—C3120.22 (19)C10—C11—Cl1119.48 (16)
C5—C4—H4119.9C12—C11—Cl1119.42 (16)
C3—C4—H4119.9C11—C12—C13119.40 (18)
C4—C5—C6120.91 (18)C11—C12—H12120.3
C4—C5—H5119.5C13—C12—H12120.3
C6—C5—H5119.5C12—C13—C8121.69 (18)
O2—C6—C5119.58 (18)C12—C13—H13119.2
O2—C6—C1121.12 (18)C8—C13—H13119.2
C5—C6—C1119.30 (18)C7—N1—C8122.99 (16)
N1—C7—C1121.34 (17)C3—O1—H1113 (2)
N1—C7—H7119.3C6—O2—H2106 (2)
C1—C7—H7119.3H1O—O3—H2O100 (4)
C13—C8—C9116.98 (18)
C6—C1—C2—C30.0 (3)N1—C8—C9—C10179.39 (17)
C7—C1—C2—C3179.05 (17)C13—C8—C9—Cl2−179.77 (14)
C1—C2—C3—O1178.63 (19)N1—C8—C9—Cl20.9 (2)
C1—C2—C3—C4−0.2 (3)C8—C9—C10—C110.7 (3)
O1—C3—C4—C5−178.8 (2)Cl2—C9—C10—C11179.20 (15)
C2—C3—C4—C50.0 (3)C9—C10—C11—C120.5 (3)
C3—C4—C5—C60.5 (3)C9—C10—C11—Cl1−179.49 (14)
C4—C5—C6—O2179.88 (19)C10—C11—C12—C13−1.0 (3)
C4—C5—C6—C1−0.7 (3)Cl1—C11—C12—C13178.96 (15)
C2—C1—C6—O2179.87 (18)C11—C12—C13—C80.4 (3)
C7—C1—C6—O20.8 (3)C9—C8—C13—C120.7 (3)
C2—C1—C6—C50.5 (3)N1—C8—C13—C12−179.98 (17)
C7—C1—C6—C5−178.58 (18)C1—C7—N1—C8178.71 (16)
C2—C1—C7—N1179.43 (17)C13—C8—N1—C79.2 (3)
C6—C1—C7—N1−1.5 (3)C9—C8—N1—C7−171.48 (17)
C13—C8—C9—C10−1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1O···O2i0.85 (4)1.94 (4)2.774 (3)170 (3)
O2—H2···N10.87 (4)1.77 (3)2.569 (2)152 (3)
O3—H2O···O1ii0.82 (4)2.49 (5)3.184 (3)143 (4)
O1—H1···O30.87 (4)1.79 (4)2.659 (3)171 (3)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2254).

References

  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  • Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404. [PMC free article] [PubMed]
  • Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [PubMed]
  • Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
  • Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571. [PMC free article] [PubMed]
  • Zhang, X. (2009). Acta Cryst. E65, o513. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography