PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3142–o3143.
Published online 2009 November 21. doi:  10.1107/S1600536809048922
PMCID: PMC2972107

6,6′-Di-tert-butyl-2,2′-[1,2-phenyl­ene­bis(nitrilo­methyl­idyne)]diphenol

Abstract

The mol­ecule of the title Schiff base compound, C28H32N2O2, has a twisted geometry, the dihedral angles between the central benzene ring and the other two benzene rings being 29.12 (14) and 26.01 (14)°. Four intra­molecular C—H(...)O hydrogen bonds and two intra­molecular O—H(...)N hydrogen bonds stabilize the mol­ecular structure. In the crystal packing, mol­ecules are stacked along the a axis and stabilized by π–π inter­actions [centroid–centroid distance = 3.6724 (17) Å]. The crystal studied was found to be a non-merohedral twin, the refined ratio of twin components being 0.374 (5):0.626 (5).

Related literature

For biological applications of Schiff base derivatives, see: Dao et al. (2000 [triangle]); Eltayeb & Ahmed (2005a [triangle],b [triangle]); Karthikeyan et al. (2006 [triangle]); Sriram et al. (2006 [triangle]). For related structures, see: Eltayeb et al. (2007a [triangle],b [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3142-scheme1.jpg

Experimental

Crystal data

  • C28H32N2O2
  • M r = 428.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3142-efi1.jpg
  • a = 6.8312 (9) Å
  • b = 13.9632 (16) Å
  • c = 14.0689 (15) Å
  • α = 116.615 (5)°
  • β = 99.068 (4)°
  • γ = 98.209 (4)°
  • V = 1149.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.87 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.936, T max = 0.996
  • 4021 measured reflections
  • 4021 independent reflections
  • 3241 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.206
  • S = 1.19
  • 4021 reflections
  • 304 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048922/lh2954sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048922/lh2954Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government, the Ministry of Higher Education, (MOHE) and Universiti Sains Malaysia (USM) for the FRGS and RU research grants (PKIMIA/815002 and PKIMIA/811120). The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b). Previously, we have reported the crystal structures of 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(5-methylphenol) (Eltayeb et al., 2007a) and 6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol (Eltayeb et al., 2007b). In this paper, we report the crystal structure of the title compound, obtained by the reaction of o-phenylenediamine and 3-tert-butyl-2-hydroxybenzaldehyde.

The title compound (Fig. 1) has a slightly twisted geometry with the dihedral angles between the two benzene rings (C1–C6 and C15–C20) with the central benzene ring (C8–C13) being 29.12 (14) and 26.01 (14)°. The geometrical parameters are comparable to previously reported structures (Eltayeb et al., 2007a,b). Two bifurcated intramolecular C—H···O hydrogen bonds and two intramolecular O—H···N hydrogen bonds stabilized the molecular structure (Fig. 1, Table 1). In the crystal packing (Fig. 2), the molecules are stacked along the a axis and stabilized by Cg1···Cg1 = 3.6724 (17) Å interactions [Cg1 is the centroid of C1–C6 phenyl ring; 1 - x, -y, 1 - z].

Experimental

To a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml) was added 3-tert-butyl-2-hydroxybenzaldehyde (0.7 ml, 4 mmol). The mixture was refluxed with stirring for 30 min. The resultant orange solution was filtered. Yellow precipitate obtained was dissolved in acetone. Yellow crystals suitable for XRD formed after a few days of slow evaporation of the solvent at room temperature.

Refinement

O-bound H atoms were located in a difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2–1.5(methyl)Ueq(C). The rotating group model was applied for the methyl groups. The crystal studied was a non-merohedral twin with a refined BASF of 0.374 (5).

Figures

Fig. 1.
The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis, showing how the molecules are stacked along the a axis.

Crystal data

C28H32N2O2Z = 2
Mr = 428.56F(000) = 460
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8312 (9) ÅCell parameters from 4325 reflections
b = 13.9632 (16) Åθ = 2.9–29.9°
c = 14.0689 (15) ŵ = 0.08 mm1
α = 116.615 (5)°T = 100 K
β = 99.068 (4)°Plate, yellow
γ = 98.209 (4)°0.87 × 0.20 × 0.05 mm
V = 1149.6 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4021 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
graphiteRint = 0.0000
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→7
Tmin = 0.936, Tmax = 0.996k = −16→14
4021 measured reflectionsl = −4→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.19w = 1/[σ2(Fo2) + (0.0995P)2 + 0.5885P] where P = (Fo2 + 2Fc2)/3
4021 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2350 (3)0.09518 (15)0.37885 (15)0.0209 (5)
O2−0.1083 (3)0.11123 (16)0.22061 (15)0.0231 (5)
N10.0669 (3)−0.11626 (17)0.27055 (17)0.0176 (5)
N2−0.1856 (3)−0.10123 (17)0.10607 (18)0.0177 (5)
C10.2757 (4)0.0859 (2)0.4710 (2)0.0173 (6)
C20.3650 (4)0.1817 (2)0.5735 (2)0.0180 (6)
C30.4083 (4)0.1661 (2)0.6647 (2)0.0205 (6)
H3A0.47110.22750.73270.025*
C40.3624 (4)0.0631 (2)0.6593 (2)0.0213 (6)
H4A0.39530.05650.72250.026*
C50.2682 (4)−0.0287 (2)0.5601 (2)0.0185 (6)
H5A0.2332−0.09750.55620.022*
C60.2250 (4)−0.0188 (2)0.4652 (2)0.0166 (6)
C70.1138 (4)−0.1159 (2)0.3629 (2)0.0178 (6)
H7A0.0740−0.18180.36410.021*
C8−0.0515 (4)−0.2150 (2)0.1771 (2)0.0164 (6)
C9−0.0387 (4)−0.3197 (2)0.1618 (2)0.0209 (6)
H9A0.0541−0.32580.21360.025*
C10−0.1613 (5)−0.4144 (2)0.0713 (2)0.0246 (7)
H10A−0.1506−0.48340.06240.029*
C11−0.3008 (5)−0.4060 (2)−0.0064 (2)0.0239 (7)
H11A−0.3866−0.4694−0.06630.029*
C12−0.3115 (4)−0.3039 (2)0.0056 (2)0.0211 (6)
H12A−0.4059−0.2991−0.04650.025*
C13−0.1838 (4)−0.2070 (2)0.0942 (2)0.0174 (6)
C14−0.2331 (4)−0.0902 (2)0.0202 (2)0.0191 (6)
H14A−0.2692−0.1530−0.04840.023*
C15−0.2329 (4)0.0154 (2)0.0251 (2)0.0181 (6)
C16−0.2928 (4)0.0202 (2)−0.0721 (2)0.0218 (6)
H16A−0.3379−0.0447−0.13890.026*
C17−0.2855 (4)0.1196 (2)−0.0698 (2)0.0232 (6)
H17A−0.32910.1223−0.13440.028*
C18−0.2127 (4)0.2166 (2)0.0297 (2)0.0222 (6)
H18A−0.20520.28350.02960.027*
C19−0.1506 (4)0.2182 (2)0.1293 (2)0.0202 (6)
C20−0.1651 (4)0.1147 (2)0.1261 (2)0.0187 (6)
C210.4042 (4)0.2968 (2)0.5821 (2)0.0218 (6)
C220.2009 (4)0.3178 (2)0.5415 (2)0.0241 (6)
H22A0.13580.26010.46810.036*
H22B0.22620.38760.54210.036*
H22C0.11340.31910.58900.036*
C230.5547 (5)0.3065 (2)0.5150 (2)0.0265 (7)
H23A0.50130.25040.43970.040*
H23B0.68340.29720.54390.040*
H23C0.57390.37790.51940.040*
C240.4951 (5)0.3884 (2)0.7013 (2)0.0271 (7)
H24A0.62520.37950.72900.041*
H24B0.40440.38380.74560.041*
H24C0.51250.45910.70400.041*
C25−0.0608 (5)0.3263 (2)0.2379 (2)0.0237 (7)
C26−0.1878 (5)0.3344 (2)0.3208 (3)0.0306 (7)
H26A−0.12780.40140.38870.046*
H26B−0.19010.27230.33360.046*
H26C−0.32480.33460.29210.046*
C270.1622 (5)0.3313 (2)0.2836 (2)0.0263 (7)
H27A0.21760.39760.35260.039*
H27B0.24060.33110.23260.039*
H27C0.16760.26830.29410.039*
C28−0.0596 (5)0.4277 (2)0.2213 (3)0.0299 (7)
H28A−0.00240.49360.29050.045*
H28B−0.19700.42720.19220.045*
H28C0.02130.42580.17080.045*
H1O2−0.127 (6)0.038 (3)0.199 (3)0.049 (11)*
H1O10.174 (7)0.026 (4)0.322 (4)0.064 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0261 (11)0.0191 (10)0.0153 (9)0.0031 (8)0.0029 (8)0.0079 (8)
O20.0313 (12)0.0210 (10)0.0194 (10)0.0070 (9)0.0042 (9)0.0120 (8)
N10.0133 (12)0.0176 (11)0.0192 (12)0.0036 (9)0.0042 (9)0.0066 (9)
N20.0142 (12)0.0192 (11)0.0206 (12)0.0052 (9)0.0042 (9)0.0100 (9)
C10.0108 (13)0.0255 (14)0.0159 (13)0.0061 (11)0.0040 (10)0.0095 (11)
C20.0105 (13)0.0226 (14)0.0186 (13)0.0040 (11)0.0057 (11)0.0073 (11)
C30.0140 (14)0.0250 (14)0.0155 (13)0.0033 (11)0.0043 (11)0.0040 (11)
C40.0170 (14)0.0312 (15)0.0175 (13)0.0082 (12)0.0051 (11)0.0124 (12)
C50.0129 (14)0.0247 (14)0.0210 (14)0.0081 (11)0.0061 (11)0.0120 (12)
C60.0088 (13)0.0213 (13)0.0201 (13)0.0059 (10)0.0053 (11)0.0091 (11)
C70.0149 (14)0.0201 (13)0.0200 (14)0.0065 (11)0.0060 (11)0.0098 (11)
C80.0130 (13)0.0161 (13)0.0179 (13)0.0022 (10)0.0063 (11)0.0059 (11)
C90.0230 (15)0.0227 (14)0.0197 (14)0.0091 (12)0.0070 (12)0.0110 (12)
C100.0336 (17)0.0151 (13)0.0249 (15)0.0064 (12)0.0109 (13)0.0083 (12)
C110.0262 (16)0.0192 (14)0.0178 (14)−0.0017 (12)0.0055 (12)0.0038 (11)
C120.0182 (14)0.0250 (14)0.0179 (13)0.0028 (11)0.0039 (11)0.0094 (11)
C130.0136 (13)0.0196 (13)0.0185 (13)0.0037 (11)0.0073 (11)0.0078 (11)
C140.0119 (13)0.0232 (14)0.0187 (13)0.0024 (11)0.0033 (11)0.0079 (11)
C150.0096 (13)0.0277 (14)0.0202 (13)0.0060 (11)0.0044 (11)0.0135 (12)
C160.0131 (14)0.0320 (15)0.0196 (14)0.0044 (12)0.0051 (11)0.0117 (12)
C170.0135 (14)0.0402 (16)0.0265 (15)0.0080 (12)0.0063 (12)0.0239 (13)
C180.0181 (14)0.0298 (15)0.0296 (15)0.0107 (12)0.0102 (12)0.0206 (13)
C190.0142 (14)0.0263 (14)0.0264 (15)0.0085 (11)0.0091 (11)0.0155 (12)
C200.0142 (14)0.0270 (14)0.0204 (14)0.0077 (11)0.0066 (11)0.0146 (12)
C210.0194 (15)0.0212 (14)0.0217 (14)0.0041 (11)0.0068 (12)0.0075 (12)
C220.0253 (16)0.0233 (14)0.0261 (15)0.0075 (12)0.0067 (13)0.0133 (12)
C230.0259 (16)0.0224 (14)0.0274 (15)0.0021 (12)0.0087 (13)0.0092 (12)
C240.0244 (16)0.0227 (15)0.0251 (15)0.0022 (12)0.0055 (13)0.0052 (12)
C250.0277 (17)0.0226 (14)0.0257 (15)0.0091 (12)0.0104 (13)0.0137 (12)
C260.0370 (19)0.0291 (16)0.0318 (16)0.0139 (14)0.0166 (15)0.0156 (14)
C270.0267 (16)0.0241 (14)0.0245 (15)0.0036 (12)0.0049 (13)0.0100 (12)
C280.0356 (18)0.0275 (15)0.0342 (17)0.0111 (14)0.0140 (14)0.0185 (14)

Geometric parameters (Å, °)

O1—C11.349 (3)C15—C201.413 (4)
O1—H1O10.91 (4)C16—C171.368 (4)
O2—C201.350 (3)C16—H16A0.9300
O2—H1O20.91 (4)C17—C181.389 (4)
N1—C71.286 (3)C17—H17A0.9300
N1—C81.416 (3)C18—C191.387 (4)
N2—C141.284 (3)C18—H18A0.9300
N2—C131.412 (3)C19—C201.414 (4)
C1—C21.415 (4)C19—C251.538 (4)
C1—C61.416 (4)C21—C231.531 (4)
C2—C31.389 (4)C21—C241.536 (4)
C2—C211.537 (4)C21—C221.536 (4)
C3—C41.393 (4)C22—H22A0.9600
C3—H3A0.9300C22—H22B0.9600
C4—C51.372 (4)C22—H22C0.9600
C4—H4A0.9300C23—H23A0.9600
C5—C61.395 (4)C23—H23B0.9600
C5—H5A0.9300C23—H23C0.9600
C6—C71.449 (4)C24—H24A0.9600
C7—H7A0.9300C24—H24B0.9600
C8—C91.397 (4)C24—H24C0.9600
C8—C131.416 (4)C25—C281.534 (4)
C9—C101.383 (4)C25—C261.535 (4)
C9—H9A0.9300C25—C271.536 (4)
C10—C111.391 (4)C26—H26A0.9600
C10—H10A0.9300C26—H26B0.9600
C11—C121.373 (4)C26—H26C0.9600
C11—H11A0.9300C27—H27A0.9600
C12—C131.398 (4)C27—H27B0.9600
C12—H12A0.9300C27—H27C0.9600
C14—C151.445 (4)C28—H28A0.9600
C14—H14A0.9300C28—H28B0.9600
C15—C161.399 (4)C28—H28C0.9600
C1—O1—H1O1107 (3)C19—C18—H18A118.5
C20—O2—H1O2104 (2)C17—C18—H18A118.5
C7—N1—C8118.6 (2)C18—C19—C20116.7 (2)
C14—N2—C13119.5 (2)C18—C19—C25122.3 (2)
O1—C1—C2119.7 (2)C20—C19—C25120.9 (2)
O1—C1—C6120.1 (2)O2—C20—C15119.8 (2)
C2—C1—C6120.3 (2)O2—C20—C19119.3 (2)
C3—C2—C1116.8 (2)C15—C20—C19120.9 (2)
C3—C2—C21122.5 (2)C23—C21—C24107.6 (2)
C1—C2—C21120.7 (2)C23—C21—C22110.5 (2)
C2—C3—C4123.2 (2)C24—C21—C22106.9 (2)
C2—C3—H3A118.4C23—C21—C2110.6 (2)
C4—C3—H3A118.4C24—C21—C2111.7 (2)
C5—C4—C3119.5 (3)C22—C21—C2109.4 (2)
C5—C4—H4A120.2C21—C22—H22A109.5
C3—C4—H4A120.2C21—C22—H22B109.5
C4—C5—C6119.9 (2)H22A—C22—H22B109.5
C4—C5—H5A120.1C21—C22—H22C109.5
C6—C5—H5A120.0H22A—C22—H22C109.5
C5—C6—C1120.2 (2)H22B—C22—H22C109.5
C5—C6—C7118.6 (2)C21—C23—H23A109.5
C1—C6—C7121.0 (2)C21—C23—H23B109.5
N1—C7—C6123.8 (2)H23A—C23—H23B109.5
N1—C7—H7A118.1C21—C23—H23C109.5
C6—C7—H7A118.1H23A—C23—H23C109.5
C9—C8—C13118.7 (2)H23B—C23—H23C109.5
C9—C8—N1122.9 (2)C21—C24—H24A109.5
C13—C8—N1118.4 (2)C21—C24—H24B109.5
C10—C9—C8121.3 (3)H24A—C24—H24B109.5
C10—C9—H9A119.4C21—C24—H24C109.5
C8—C9—H9A119.4H24A—C24—H24C109.5
C9—C10—C11119.7 (2)H24B—C24—H24C109.5
C9—C10—H10A120.1C28—C25—C26107.5 (2)
C11—C10—H10A120.1C28—C25—C27107.1 (2)
C12—C11—C10119.8 (3)C26—C25—C27110.9 (2)
C12—C11—H11A120.1C28—C25—C19111.6 (2)
C10—C11—H11A120.1C26—C25—C19110.5 (2)
C11—C12—C13121.6 (3)C27—C25—C19109.2 (2)
C11—C12—H12A119.2C25—C26—H26A109.5
C13—C12—H12A119.2C25—C26—H26B109.5
C12—C13—N2122.8 (2)H26A—C26—H26B109.5
C12—C13—C8118.6 (2)C25—C26—H26C109.5
N2—C13—C8118.6 (2)H26A—C26—H26C109.5
N2—C14—C15122.9 (2)H26B—C26—H26C109.5
N2—C14—H14A118.5C25—C27—H27A109.5
C15—C14—H14A118.5C25—C27—H27B109.5
C16—C15—C20119.2 (2)H27A—C27—H27B109.5
C16—C15—C14119.5 (2)C25—C27—H27C109.5
C20—C15—C14121.3 (2)H27A—C27—H27C109.5
C17—C16—C15120.5 (3)H27B—C27—H27C109.5
C17—C16—H16A119.8C25—C28—H28A109.5
C15—C16—H16A119.8C25—C28—H28B109.5
C16—C17—C18119.6 (3)H28A—C28—H28B109.5
C16—C17—H17A120.2C25—C28—H28C109.5
C18—C17—H17A120.2H28A—C28—H28C109.5
C19—C18—C17123.1 (3)H28B—C28—H28C109.5
O1—C1—C2—C3−178.2 (2)N1—C8—C13—N22.6 (4)
C6—C1—C2—C33.2 (4)C13—N2—C14—C15−178.2 (2)
O1—C1—C2—C213.7 (4)N2—C14—C15—C16−178.0 (3)
C6—C1—C2—C21−174.9 (2)N2—C14—C15—C204.8 (4)
C1—C2—C3—C4−2.1 (4)C20—C15—C16—C170.1 (4)
C21—C2—C3—C4176.0 (2)C14—C15—C16—C17−177.2 (2)
C2—C3—C4—C5−0.5 (4)C15—C16—C17—C181.8 (4)
C3—C4—C5—C62.0 (4)C16—C17—C18—C19−1.8 (4)
C4—C5—C6—C1−0.8 (4)C17—C18—C19—C20−0.2 (4)
C4—C5—C6—C7−176.1 (2)C17—C18—C19—C25177.0 (3)
O1—C1—C6—C5179.5 (2)C16—C15—C20—O2179.5 (2)
C2—C1—C6—C5−1.9 (4)C14—C15—C20—O2−3.2 (4)
O1—C1—C6—C7−5.3 (4)C16—C15—C20—C19−2.2 (4)
C2—C1—C6—C7173.3 (2)C14—C15—C20—C19175.1 (2)
C8—N1—C7—C6−176.7 (2)C18—C19—C20—O2−179.5 (2)
C5—C6—C7—N1−179.6 (3)C25—C19—C20—O23.2 (4)
C1—C6—C7—N15.2 (4)C18—C19—C20—C152.2 (4)
C7—N1—C8—C9−32.3 (4)C25—C19—C20—C15−175.1 (2)
C7—N1—C8—C13149.7 (2)C3—C2—C21—C23120.0 (3)
C13—C8—C9—C10−4.1 (4)C1—C2—C21—C23−62.0 (3)
N1—C8—C9—C10177.9 (2)C3—C2—C21—C240.1 (4)
C8—C9—C10—C11−0.1 (4)C1—C2—C21—C24178.1 (2)
C9—C10—C11—C122.0 (4)C3—C2—C21—C22−118.1 (3)
C10—C11—C12—C130.5 (4)C1—C2—C21—C2259.9 (3)
C11—C12—C13—N2177.3 (2)C18—C19—C25—C282.6 (4)
C11—C12—C13—C8−4.7 (4)C20—C19—C25—C28179.7 (2)
C14—N2—C13—C12−29.9 (4)C18—C19—C25—C26122.2 (3)
C14—N2—C13—C8152.0 (3)C20—C19—C25—C26−60.7 (3)
C9—C8—C13—C126.4 (4)C18—C19—C25—C27−115.6 (3)
N1—C8—C13—C12−175.6 (2)C20—C19—C25—C2761.5 (3)
C9—C8—C13—N2−175.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.91 (5)1.73 (4)2.584 (3)156 (4)
O1—H1O1···N10.91 (5)1.77 (6)2.609 (3)151 (5)
C22—H22A···O10.962.342.993 (3)125
C23—H23A···O10.962.342.987 (4)124
C26—H26B···O20.962.312.963 (4)125
C27—H27C···O20.962.373.011 (4)124

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2954).

References

  • Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813. [PubMed]
  • Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51–59.
  • Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.
  • Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o695–o696.
  • Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o766–o767.
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography