PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3073.
Published online 2009 November 14. doi:  10.1107/S1600536809047126
PMCID: PMC2972105

1-Methyl-4,5-dinitro-1H-imidazole

Abstract

In the title compound, C4H4N4O4, the two nitro groups are twisted with respect to the imidazole plane, making dihedral angles of 24.2 (3) and 33.4 (4)°. In the crystal structure, the mol­ecules are linked through non-classical inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the synthesis, see: Damavarapu et al. (2007 [triangle]). For the biological activity of polynitro­imidazole systems, see: Hofmann (1953 [triangle]); Breccia et al. (1982 [triangle]); Boyer (1986 [triangle]). For their detonation performance, see: Storm et al. (1990 [triangle]); Katritzky et al. (1993 [triangle]); Bulusu et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3073-scheme1.jpg

Experimental

Crystal data

  • C4H4N4O4
  • M r = 172.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3073-efi11.jpg
  • a = 8.412 (2) Å
  • b = 12.646 (3) Å
  • c = 6.563 (1) Å
  • V = 698.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.944, T max = 0.971
  • 3573 measured reflections
  • 871 independent reflections
  • 648 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.112
  • S = 0.95
  • 871 reflections
  • 111 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2000 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047126/lx2116sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047126/lx2116Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank China North Industries Group Corporation for financial support.

supplementary crystallographic information

Comment

Polynitroimidazole systems have been investigated extensively owing to their biological activity (Hofmann, 1953; Breccia et al., 1982; Boyer, 1986). Recently, these so called "high energy density materials" have attracted renewed attention in conjunction with their favorable detonation performance (Storm et al., 1990; Katritzky et al., 1993; Bulusu et al., 1995). As a promising candidate, 1-methyl-4,5- dinitroimidazole was synthesized by the nitration of N-methyl- imidazole (Damavarapu et al., 2007). Here we reprot the crystal structure of the title compound (Fig. 1).

In the crystal structure, the two nitro groups are twisted with respect to the imidazole plane, making dihedral angles of 24.2 (3)° (N3/O1, O2) and 33.4 (4)° (N4/O3, O4). The molecular packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O hydrogen bonds; the first between the imidazole H atom and an oxygen of the nitro group, with C1–H1···Oi, the second between the methyl H atom and an oxygen of the nitro group, with C4–H4A···O4ii, respectively (Table 1).

Experimental

The title compound was prepared according to literature method (Damavarapu et al., 2007). Single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in methanol at room temperature.

Refinement

All the Friedel pairs were merged. All H atoms were positioned geometrically and treated as riding, with C–H bond lengths constrained to 0.93 ° for imidazole ring H and 0.96 ° for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for imidazole ring H atom and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C–H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1/2, y + 1/2, z - 1/2; (ii) x + 1/2, - y + 3/2, z - 1; (iii) - x + 1/2, y - 1/2, z + 1/2; (iv) x - 1/2, - y ...

Crystal data

C4H4N4O4F(000) = 352
Mr = 172.11Dx = 1.637 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3573 reflections
a = 8.412 (2) Åθ = 2.9–27.6°
b = 12.646 (3) ŵ = 0.15 mm1
c = 6.563 (1) ÅT = 293 K
V = 698.2 (3) Å3Block, colorless
Z = 40.40 × 0.30 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer871 independent reflections
Radiation source: fine-focus sealed tube648 reflections with I > 2σ(I)
graphiteRint = 0.097
Detector resolution: 10.00 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scansh = −10→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −16→16
Tmin = 0.944, Tmax = 0.971l = −8→8
3573 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.112w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
871 reflectionsΔρmax = 0.22 e Å3
111 parametersΔρmin = −0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.147 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2730 (4)0.7411 (2)0.2853 (6)0.0530 (8)
H10.32510.77510.17890.064*
C20.1370 (3)0.7145 (2)0.5486 (5)0.0449 (7)
C30.1843 (3)0.61741 (19)0.4808 (5)0.0378 (6)
C40.3530 (4)0.5610 (3)0.1731 (6)0.0607 (9)
H4A0.39550.59880.05850.091*
H4B0.27800.50920.12620.091*
H4C0.43770.52640.24470.091*
N10.2728 (2)0.63562 (17)0.3106 (4)0.0410 (6)
N20.1915 (4)0.79129 (19)0.4271 (5)0.0561 (7)
N30.1551 (3)0.51403 (18)0.5576 (4)0.0490 (7)
N40.0529 (3)0.7419 (2)0.7316 (5)0.0569 (7)
O10.2496 (3)0.44510 (19)0.5115 (6)0.0806 (9)
O20.0370 (3)0.5008 (2)0.6601 (5)0.0773 (9)
O30.0716 (4)0.6874 (3)0.8832 (5)0.0878 (10)
O4−0.0300 (3)0.8211 (2)0.7273 (6)0.0839 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0718 (17)0.0401 (15)0.0470 (18)−0.0025 (13)0.0072 (16)0.0127 (15)
C20.0424 (13)0.0501 (16)0.0421 (16)0.0026 (10)−0.0036 (12)−0.0010 (13)
C30.0393 (12)0.0394 (13)0.0346 (13)−0.0021 (9)−0.0019 (11)0.0059 (11)
C40.0676 (18)0.0527 (19)0.062 (2)0.0108 (14)0.0197 (17)0.0053 (17)
N10.0471 (10)0.0376 (12)0.0384 (12)0.0002 (9)0.0032 (11)0.0074 (11)
N20.0737 (16)0.0423 (14)0.0524 (18)0.0039 (11)0.0002 (15)0.0042 (12)
N30.0560 (13)0.0463 (14)0.0446 (15)−0.0099 (11)−0.0002 (13)0.0116 (12)
N40.0537 (13)0.0690 (17)0.0479 (16)−0.0004 (14)−0.0017 (13)−0.0132 (15)
O10.0872 (16)0.0502 (13)0.104 (3)0.0139 (11)0.0169 (18)0.0335 (15)
O20.0832 (18)0.0780 (17)0.071 (2)−0.0301 (13)0.0296 (16)0.0049 (14)
O30.116 (2)0.098 (2)0.0499 (17)0.0005 (17)0.0167 (17)0.0044 (15)
O40.0717 (14)0.106 (2)0.074 (2)0.0307 (13)−0.0068 (15)−0.0273 (19)

Geometric parameters (Å, °)

C1—N21.318 (5)C4—N11.470 (4)
C1—N11.344 (4)C4—H4A0.9600
C1—H10.9300C4—H4B0.9600
C2—N21.337 (4)C4—H4C0.9600
C2—C31.365 (4)N3—O21.212 (3)
C2—N41.436 (4)N3—O11.218 (4)
C3—N11.361 (4)N4—O31.220 (5)
C3—N31.423 (3)N4—O41.222 (4)
N2—C1—N1112.9 (3)H4A—C4—H4C109.5
N2—C1—H1123.5H4B—C4—H4C109.5
N1—C1—H1123.5C1—N1—C3105.7 (2)
N2—C2—C3111.0 (3)C1—N1—C4124.1 (3)
N2—C2—N4119.5 (3)C3—N1—C4130.2 (2)
C3—C2—N4129.2 (3)C1—N2—C2104.5 (2)
N1—C3—C2105.9 (2)O2—N3—O1125.1 (3)
N1—C3—N3122.7 (2)O2—N3—C3117.8 (3)
C2—C3—N3131.3 (3)O1—N3—C3117.2 (3)
N1—C4—H4A109.5O3—N4—O4123.8 (4)
N1—C4—H4B109.5O3—N4—C2118.8 (3)
H4A—C4—H4B109.5O4—N4—C2117.3 (3)
N1—C4—H4C109.5
N2—C2—C3—N10.4 (3)C3—C2—N2—C1−0.3 (4)
N4—C2—C3—N1−174.1 (3)N4—C2—N2—C1174.8 (3)
N2—C2—C3—N3−179.5 (3)N1—C3—N3—O2−155.1 (3)
N4—C2—C3—N36.0 (5)C2—C3—N3—O224.8 (5)
N2—C1—N1—C30.2 (4)N1—C3—N3—O123.5 (4)
N2—C1—N1—C4179.3 (3)C2—C3—N3—O1−156.6 (3)
C2—C3—N1—C1−0.3 (3)N2—C2—N4—O3−143.7 (4)
N3—C3—N1—C1179.6 (3)C3—C2—N4—O330.5 (5)
C2—C3—N1—C4−179.4 (3)N2—C2—N4—O434.1 (4)
N3—C3—N1—C40.5 (5)C3—C2—N4—O4−151.8 (3)
N1—C1—N2—C20.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.493.150 (4)128
C4—H4A···O4ii0.962.483.428 (5)170

Symmetry codes: (i) −x+1/2, y+1/2, z−1/2; (ii) x+1/2, −y+3/2, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2116).

References

  • Boyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, Florida: VCH.
  • Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Breccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles. Chemistry, Pharmacology, and Clinical Application. New York: Plenum.
  • Bulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009–5015.
  • Damavarapu, R., Surapaneni, R. C., Gelber, N. et al. (2007). US Patent 7 304 164.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Hofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience.
  • Katritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345–352.
  • Rigaku (2000). RAPID-AUTO and CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Storm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography