PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1678–m1679.
Published online 2009 November 25. doi:  10.1107/S1600536809049769
PMCID: PMC2972104

Bis(4-amino­benzene­sulfonato-κO)bis­(propane-1,3-diamine-κ2 N,N′)copper(II) dihydrate

Abstract

In the title compound, [Cu(C3H10N2)2(C6H6NO3S)2]·2H2O, the CuII atom lies on an inversion center and is hexa­coordinated by four N atoms from two 1,3-diamino­propane ligands and two O atoms from two 4-amino­benzene­sulfonate ligands in a trans arrangement, displaying a distorted and axially elongated octa­hedral coordination geometry, with the O atoms at the axial positions. A three-dimensional network is formed in the crystal structure through O—H(...)O, N—H(...)O and N—H(...)N hydrogen bonds.

Related literature

For general background to crystal engineering based on metal and organic building blocks, see: Evans & Lin (2002 [triangle]); Li et al. (2003 [triangle], 2004 [triangle]). For related structures, see: Kim & Lee (2002 [triangle]); Sundberg et al. (2001 [triangle]); Sundberg & Sillanpää (1993 [triangle]); Sundberg & Uggla (1997 [triangle]); Wang et al. (2002 [triangle]). For the synthesis, see: Gunderman et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1678-scheme1.jpg

Experimental

Crystal data

  • [Cu(C3H10N2)2(C6H6NO3S)2]·2H2O
  • M r = 592.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1678-efi1.jpg
  • a = 9.5171 (1) Å
  • b = 10.3875 (4) Å
  • c = 13.1646 (5) Å
  • β = 101.256 (2)°
  • V = 1276.40 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 293 K
  • 0.48 × 0.20 × 0.18 mm

Data collection

  • Siemens SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.627, T max = 0.830
  • 3629 measured reflections
  • 2230 independent reflections
  • 1889 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.132
  • S = 1.09
  • 2230 reflections
  • 161 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049769/hy2252sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049769/hy2252Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the NSFC (grant No. 20801047), the Foundation of Xuzhou Normal University (07XLA07, KY2007039 and XGG2007034) and the ‘Qing Lan’ Project (08QLT001).

supplementary crystallographic information

Comment

Crystal engineering based on metal and organic building blocks has been rapidly developed in recent years owing to their novel and diverse topologies and potential applications in catalysis and host–guest chemistry (Evans & Lin, 2002). Covalent bonds and hydrogen bonds have been demonstrated to be two important interactions in constructing metal-containing supramolecular frameworks, and they have brought forth a great variety of novel frameworks with fascinating structural motifs (Li et al., 2003, 2004). 1,3-Diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). The crystal egineering of tn and carboxylate ligands has been studied in detail (Sundberg et al., 2001), but supramolecular chemistry of tn and 4-aminobenzenesulfonate (4-ABS) ligand is still not explored to that extent (Wang et al., 2002). 4-ABS can act as a bridging or a terminal ligand in its metal complexes. On the other hand, studies on the coordination and supramolecular chemistry of 4-ABS have showed that it is a good H-bond acceptor and can form strong H-bonds due to its three O atoms and one N atom (Kim & Lee, 2002; Wang et al., 2002). In view of their excellent coordination capability and good H-bond donor or acceptor nature, we employed tn and 4-ABS as mixed organic building blocks to construct supramolecular networks in an expectation that these ligands may generate hydrogen bonding and/or covalent interactions with transition metal ions in the assembly process. Herein, we report the synthesis and structure of the title compound.

As shown in Fig. 1, the CuII atom lies on an inversion center and is octahedrally coordinated by four N atoms from two tn ligands and two O atoms from two 4-ABS ligands in a trans arrangement. The coordination polyhedron of the CuII ion can be described as axially elongated octahedral, with the O atoms at the axial positions. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg & Sillanpää, 1993; Sundberg & Uggla, 1997). The axial Cu—O distance is 2.589 (3) Å, indicating a weak coordination. The equatorial Cu—N1 and Cu—N2 bond lengths are 2.038 (3) and 2.029 (3) Å, respectively, which are much shorter than the axial Cu—O distance and very similar to those in the previously reported trans-bis(4-methylbenzenesulfonato)bis(1,3-diaminopropane)copper(II) (Sundberg & Sillanpää, 1993). The tn molecule forms a six-membered chelate ring with asymmetric Cu—N1—C1 and Cu—N2—C3 angles of 122.7 (2) and 119.9 (2)°. A plausible explanation for the deviations described above may be attributed to the asymmetric hydrogen bonding with respect to the chelate ring. The complex molecules are linked into a two-dimensional layer through hydrogen bonds between the uncoordinated water, the sulfonate group and the amino groups of the tn ligand. The layers are further connected into a three-dimensional network through hydrogen bonds between the amino groups and the sulfonate groups of neighboring 4-ABS ligands (Fig. 2).

Experimental

Diaquabis(4-aminobenzenesulfonato)copper(II) dihydrate was synthesized according to the literature (Gunderman et al., 1996). 1,3-Diaminopropane (0.35 g, 4.72 mmol) in 10 ml water was dropped slowly into the stirred diaquabis(4-aminobenzenesulfonato)copper(II) dihydrate (1.12 g, 2.33 mmol) solution in 20 ml water. The mixed solution was kept stirring at room temperature for 30 min. After filtration, the filtrate was left to evaporate in air. After a few days, blue crystals of the title compound suitable for X-ray study were obtained (yield 0.70 g, 51%).

Refinement

H atoms bonded to C atoms or N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and N—H = 0.90 and 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). Water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) =1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote hydrogen bonds. [Symmetry code: (i) 1 - x, -y, 1 - z.]
Fig. 2.
The packing diagram of the title compound viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.

Crystal data

[Cu(C3H10N2)2(C6H6NO3S)2]·2H2OF(000) = 622
Mr = 592.19Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2312 reflections
a = 9.5171 (1) Åθ = 2.2–25.1°
b = 10.3875 (4) ŵ = 1.07 mm1
c = 13.1646 (5) ÅT = 293 K
β = 101.256 (2)°Prism, blue
V = 1276.40 (7) Å30.48 × 0.20 × 0.18 mm
Z = 2

Data collection

Siemens SMART 1000 CCD diffractometer2230 independent reflections
Radiation source: fine-focus sealed tube1889 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→11
Tmin = 0.627, Tmax = 0.830k = −7→12
3629 measured reflectionsl = −15→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132w = 1/[σ2(Fo2) + (0.0669P)2 + 1.3129P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2230 reflectionsΔρmax = 0.48 e Å3
161 parametersΔρmin = −0.41 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.054 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.50000.00000.50000.0387 (3)
N10.3723 (3)−0.1305 (3)0.5539 (2)0.0470 (7)
H1A0.3788−0.20430.51930.056*
H1B0.4125−0.14570.62050.056*
N20.3801 (3)0.1490 (3)0.5351 (2)0.0457 (7)
H2A0.41710.17310.60050.055*
H2B0.39290.21530.49380.055*
C10.2183 (4)−0.1079 (4)0.5506 (3)0.0565 (10)
H1C0.1820−0.17420.59050.068*
H1D0.1669−0.11430.47960.068*
C20.1902 (4)0.0226 (4)0.5934 (3)0.0537 (10)
H2C0.09020.02770.59900.064*
H2D0.24760.03140.66250.064*
C30.2240 (4)0.1327 (4)0.5273 (3)0.0519 (9)
H3A0.17940.11690.45570.062*
H3B0.18400.21160.54910.062*
O1W0.5872 (4)−0.1325 (5)0.1104 (5)0.147 (2)
H1WA0.5115−0.08760.09340.221*
H1WB0.5700−0.18400.15630.221*
S0.31964 (10)0.04586 (13)0.21957 (7)0.0585 (4)
O10.3474 (3)−0.0243 (3)0.3153 (3)0.0735 (10)
O20.3401 (4)−0.0303 (6)0.1333 (3)0.156 (3)
O30.4010 (3)0.1646 (4)0.2294 (3)0.0936 (13)
C110.1360 (4)0.0876 (4)0.1932 (2)0.0435 (8)
C120.0384 (4)0.0061 (4)0.1338 (3)0.0488 (9)
H12A0.0702−0.06750.10500.059*
C13−0.1068 (4)0.0337 (4)0.1168 (3)0.0527 (10)
H13A−0.1717−0.02200.07700.063*
C14−0.1565 (4)0.1431 (4)0.1584 (3)0.0483 (9)
C15−0.0568 (4)0.2261 (4)0.2159 (3)0.0523 (9)
H15A−0.08800.30160.24240.063*
C160.0875 (4)0.1982 (4)0.2342 (3)0.0493 (9)
H16A0.15250.25380.27410.059*
N3−0.3017 (3)0.1723 (4)0.1411 (3)0.0680 (10)
H3D−0.36270.12190.10390.082*
H3C−0.33050.24070.16760.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0294 (4)0.0433 (4)0.0434 (4)0.0037 (2)0.0068 (2)0.0027 (2)
N10.0377 (16)0.0488 (17)0.0541 (18)0.0005 (13)0.0079 (13)0.0047 (14)
N20.0406 (16)0.0493 (17)0.0478 (17)0.0061 (13)0.0103 (13)−0.0016 (14)
C10.0385 (19)0.064 (2)0.069 (3)−0.0065 (18)0.0147 (18)−0.005 (2)
C20.039 (2)0.076 (3)0.049 (2)0.0008 (18)0.0162 (17)−0.0048 (19)
C30.0358 (19)0.068 (3)0.051 (2)0.0141 (17)0.0058 (16)−0.0058 (19)
O1W0.061 (2)0.130 (4)0.254 (6)−0.018 (2)0.038 (3)−0.109 (4)
S0.0392 (5)0.0932 (8)0.0388 (5)0.0172 (5)−0.0031 (4)0.0027 (5)
O10.0558 (18)0.081 (2)0.070 (2)0.0005 (15)−0.0221 (15)0.0234 (16)
O20.067 (3)0.294 (7)0.091 (3)0.084 (3)−0.025 (2)−0.090 (4)
O30.0430 (16)0.125 (3)0.109 (3)−0.0080 (18)0.0046 (17)0.051 (2)
C110.0385 (18)0.057 (2)0.0331 (17)0.0085 (16)0.0022 (13)0.0113 (15)
C120.049 (2)0.051 (2)0.042 (2)0.0118 (16)0.0005 (16)0.0030 (16)
C130.044 (2)0.053 (2)0.056 (2)−0.0013 (17)−0.0026 (17)0.0072 (18)
C140.0387 (19)0.058 (2)0.048 (2)0.0050 (17)0.0075 (15)0.0182 (17)
C150.054 (2)0.052 (2)0.052 (2)0.0129 (18)0.0123 (17)0.0032 (18)
C160.050 (2)0.055 (2)0.0408 (19)0.0000 (17)0.0035 (15)0.0011 (16)
N30.0404 (18)0.075 (2)0.087 (3)0.0107 (17)0.0085 (17)0.012 (2)

Geometric parameters (Å, °)

Cu—N12.038 (3)O1W—H1WB0.85
Cu—N22.029 (3)S—O21.428 (4)
Cu—O12.589 (3)S—O11.435 (3)
N1—C11.476 (4)S—O31.448 (4)
N1—H1A0.9000S—C111.768 (3)
N1—H1B0.9000C11—C121.381 (5)
N2—C31.479 (4)C11—C161.386 (5)
N2—H2A0.9000C12—C131.386 (6)
N2—H2B0.9000C12—H12A0.9300
C1—C21.512 (5)C13—C141.384 (6)
C1—H1C0.9700C13—H13A0.9300
C1—H1D0.9700C14—N31.389 (5)
C2—C31.509 (6)C14—C151.391 (6)
C2—H2C0.9700C15—C161.378 (5)
C2—H2D0.9700C15—H15A0.9300
C3—H3A0.9700C16—H16A0.9300
C3—H3B0.9700N3—H3D0.8600
O1W—H1WA0.85N3—H3C0.8600
N2—Cu—N2i180.0C1—C2—H2D109.0
N2—Cu—N191.61 (13)H2C—C2—H2D107.8
N2i—Cu—N188.40 (13)N2—C3—C2111.8 (3)
N2—Cu—N1i88.40 (13)N2—C3—H3A109.3
N2i—Cu—N1i91.60 (13)C2—C3—H3A109.3
N1—Cu—N1i180.0N2—C3—H3B109.3
N2—Cu—O1i87.08 (11)C2—C3—H3B109.3
N2i—Cu—O1i92.92 (11)H3A—C3—H3B107.9
N1—Cu—O1i90.08 (11)H1WA—O1W—H1WB105.1
N1i—Cu—O1i89.92 (11)O2—S—O1112.8 (3)
N2—Cu—O192.92 (11)O2—S—O3112.9 (3)
N2i—Cu—O187.08 (12)O1—S—O3110.5 (2)
N1—Cu—O189.92 (11)O2—S—C11105.22 (19)
N1i—Cu—O190.08 (11)O1—S—C11107.59 (18)
O1i—Cu—O1180.0O3—S—C11107.44 (19)
C1—N1—Cu122.7 (2)S—O1—Cu138.47 (19)
C1—N1—H1A106.7C12—C11—C16119.4 (3)
Cu—N1—H1A106.7C12—C11—S119.4 (3)
C1—N1—H1B106.7C16—C11—S121.2 (3)
Cu—N1—H1B106.7C11—C12—C13120.2 (4)
H1A—N1—H1B106.6C11—C12—H12A119.9
C3—N2—Cu119.9 (2)C13—C12—H12A119.9
C3—N2—H2A107.3C14—C13—C12120.8 (4)
Cu—N2—H2A107.3C14—C13—H13A119.6
C3—N2—H2B107.3C12—C13—H13A119.6
Cu—N2—H2B107.3C13—C14—N3121.3 (4)
H2A—N2—H2B106.9C13—C14—C15118.3 (3)
N1—C1—C2112.3 (3)N3—C14—C15120.3 (4)
N1—C1—H1C109.1C16—C15—C14121.0 (4)
C2—C1—H1C109.1C16—C15—H15A119.5
N1—C1—H1D109.1C14—C15—H15A119.5
C2—C1—H1D109.1C15—C16—C11120.1 (4)
H1C—C1—H1D107.9C15—C16—H16A119.9
C3—C2—C1113.1 (3)C11—C16—H16A119.9
C3—C2—H2C109.0C14—N3—H3D120.0
C1—C2—H2C109.0C14—N3—H3C120.0
C3—C2—H2D109.0H3D—N3—H3C120.0

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.851.902.651 (5)146
O1W—H1WB···O3ii0.852.162.969 (8)160
N1—H1A···N3iii0.902.463.250 (5)147
N1—H1B···O3i0.902.393.243 (4)158
N2—H2A···O3iv0.902.423.183 (4)143
N2—H2B···O1Wv0.902.133.025 (5)177
N3—H3D···O1Wvi0.862.693.337 (6)133
N3—H3C···O1vii0.862.463.248 (5)153

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (i) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x−1, y, z; (vii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2252).

References

  • Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. [PubMed]
  • Gunderman, B. J., Squattrito, P. J. & Dubey, S. N. (1996). Acta Cryst. C52, 1131–1134.
  • Kim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421–m423. [PubMed]
  • Li, X. L., Chen, J. T., Niu, D. Z., Sheng, J. T. & Zhang, D. P. (2003). Chin. J. Struct. Chem. 22, 415–418.
  • Li, X. L., Tong, M. L., Niu, D. Z. & Chen, J. T. (2004). Chin. J. Chem. 22, 64–68.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sundberg, M. R., Kivekäs, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217.
  • Sundberg, M. R. & Sillanpää, R. (1993). Acta Chem. Scand. 47, 1173–1178.
  • Sundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259–265.
  • Wang, Y., Feng, L., Li, Y., Hu, C., Wang, E., Hu, N. & Jia, H. (2002). Inorg. Chem. 41, 6351–6357. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography