PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1553–m1554.
Published online 2009 November 11. doi:  10.1107/S1600536809046625
PMCID: PMC2972101

catena-Poly[diaqua­tris(μ3-biphenyl-2,2-dicarboxyl­ato)disamarium(III)]

Abstract

The title compound, [Sm2(C14H8O4)3(H2O)2]n, is composed of one-dimensional chains and is isostructural with previously reported compounds [Wang et al. (2003 [triangle]). Eur. J. Inorg. Chem. pp. 1355–1360]. The asymmetric unit contains two Sm atoms, each of which lies on a crystallographic twofold axis. Both crystallographically independent Sm atoms are coordinated by eight O atoms in a distorted dodeca­hedral arrangement. The polymeric chains run along [001]. Adjacent chains are connected through π–π inter­actions [centroid–centroid distance = 3.450 (2) Å], forming a two-dimensional supra­molecular network.

Related literature

For background to the design and syntheses of lanthanide complexes and their potential applications as fluorescent probes, magnetic materials and catalysts, see: Barta et al. (2008 [triangle]); de Bettencourt-Dias et al. (2005 [triangle]), (2005); Chen et al. (2008 [triangle]); Fujita et al. (1994 [triangle]); Taniguchi & Takahei (1993 [triangle]). For the effect of the organic ligands on the structural framework of lanthanide complexes, see: Liu & Xu (2005 [triangle]); Wang et al. (2007 [triangle]); Yigit et al. (2006 [triangle]). For the use of multidentate O-donor ligands as organic spacers in the construction of these complexes, see: Lin et al. (2005 [triangle]); Zheng et al. (2008 [triangle]). For the coordination behaviour of 2,2′-biphenyl­dicarboxyl­ate, see: Thirumurugan et al. (2003 [triangle]); Xu et al. (2006 [triangle]); Rui et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1553-scheme1.jpg

Experimental

Crystal data

  • [Sm2(C14H8O4)3(H2O)2]
  • M r = 1057.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1553-efi3.jpg
  • a = 20.776 (4) Å
  • b = 21.441 (4) Å
  • c = 8.2660 (17) Å
  • β = 103.94 (3)°
  • V = 3573.7 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.33 mm−1
  • T = 293 K
  • 0.39 × 0.34 × 0.27 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.261, T max = 0.409
  • 15001 measured reflections
  • 3962 independent reflections
  • 3238 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.130
  • S = 1.18
  • 3962 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 2.31 e Å−3
  • Δρmin = −1.91 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046625/jh2091sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046625/jh2091Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by K. C. Wong Magna Fund in Ningbo University and supported by the Zhejiang Provincial Science and Technology Agency project (2007 F70009).

supplementary crystallographic information

Comment

Design and syntheses of lanthanide complexes are of great interest due to their various topological networks and potential applications in fluorescent probes, magnetic materials, catalysts (Barta et al., 2008; Bettencout-de Dias, 2005; Chen et al., 2008; Fujita et al., 1994; Taniguchi & Takahei, 1993). As reported in literature, the geometries and properties of organic ligands have great effect on structural framework of lanthanide complexes. So much effort has been devoted to modify the building blocks to control the products by selection of appropriate organic ligands (Liu & Xu, 2005; Wang et al., 2007; Yigit et al., 2006). Multidentae O donor ligands have been employed extensively as organic spacers in the construction of these complexes, such as α,ω-dicarboxylate and 1,3,5-benzenetricarboxylate (Lin et al., 2005; Zheng et al., 2008). Recently, research suggests that 2,2'-biphenyldicarboxylate (dpdc) possesses intriguing coordination behaviors to afford new coordination polymers (Thirumurugan et al., 2003; Xu, et al., 2006; Rui, et al., 2007). In this articles, we will report a new coordination polymers [Sm2(C14H8O4)3(H2O)2]n.

The crystal structure of the title compound (I) consists of one-dimensional chains of [Sm2(C14H8O4)3(H2O)2]n. (Fig 1). The asymmetric unit consists of two Sm atoms, each of which lies on the crystallographic twofold axis. Both crystallographically independent Sm atoms are coordinated to eight oxygen atoms and have a distorted dodecahedral arrangement. The Sm(1)—O (carboxylate) distances fall in the range 2.320 (5)–2.615 (5) Å, and the O—Sm(1)—O bond angles are in the range 25.5 (2)–153.5 (2)°. While the Sm(2)—O (carboxylate) bond lengths vary from 2.301 (5) Å to 2.480 (5))Å, and the Sm(2)—O (aqua) distances are both 2.540 (6) Å. The O—Sm(2)—O bond angles range from 66.8 (2)–147.2 (2)°. The coordination environments of two Sm atoms are different. The Sm(1) is coordinated to one tetradentate dpdc ligand and four pentadentate dpdc ligands, however, the Sm(2) is bonded to two tetradentate dpdc ligands, two pentadentate dpdc ligands, and two coordinated water molecules. The Sm atoms are bridged by the two types dpdc ligands to afford one-dimensional infinite polymeric chain which run along the [001] direction. As reported in documents, the one-dimensional chain looks like a pinwheel, the Sm atoms are at the center of pinwheel. The parallel phenyl rings of adjacent chains are interdigitaed. The two-dimensional supramolecule networks are formed by π-π interactions between these phenyl rings.

Experimental

A mixture of Sm(NO3)3.6H2O (0.222 g, 0.5 mmol) and 2,2'-diphenldicarboxylic acid (0.126 g, 0.5 mmol), H2O (5 ml), and H2C2O4 (0.080 g, 1 mmol), NaOH (0.040 g, 1 mmol) was sealed in a 25-ml stainless-steel reactor with Teflon liner, heated to 180°C for 4 days, and then cooled to room temperature. The products were filtered and colorless block crystals are obtained.

Refinement

H atoms bonded to C atoms were placed in geometrically calulated positons and refined using a riding moldel, with Uiso(H) = 1.2Ueq(C). Water H atoms were found in difference Fourier synthesis and refined with th O—H distances fixed as initially found, with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
ORTEP view of complex molecule of (I). Displacement ellipsoids are drawn at the 45% probability level. (#1 = -x, y, 3/2 - z; #2 = x, y, z + 1; #3 = -x, y, 1/2 - z.)
Fig. 2.
two-dimensional supramolecular layer in (I).

Crystal data

[Sm2(C14H8O4)3(H2O)2]F(000) = 2064
Mr = 1057.34Dx = 1.965 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12337 reflections
a = 20.776 (4) Åθ = 3.0–27.7°
b = 21.441 (4) ŵ = 3.33 mm1
c = 8.2660 (17) ÅT = 293 K
β = 103.94 (3)°Block, colorless
V = 3573.7 (13) Å30.39 × 0.34 × 0.27 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3962 independent reflections
Radiation source: fine-focus sealed tube3238 reflections with I > 2σ(I)
graphiteRint = 0.067
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −26→26
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −27→27
Tmin = 0.261, Tmax = 0.409l = −10→10
15001 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + 89.0505P] where P = (Fo2 + 2Fc2)/3
3962 reflections(Δ/σ)max = 0.005
263 parametersΔρmax = 2.31 e Å3
0 restraintsΔρmin = −1.91 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sm10.00000.20641 (2)0.75000.01913 (15)
Sm20.00000.28693 (2)0.25000.01920 (15)
O10.0507 (3)0.1479 (3)0.5795 (7)0.0347 (14)
O20.0696 (3)0.2088 (2)0.3778 (7)0.0270 (12)
O30.0595 (3)0.2463 (3)0.0471 (7)0.0272 (12)
O40.0957 (3)0.1637 (3)−0.0570 (7)0.0371 (15)
O50.0340 (3)0.3549 (3)0.4988 (7)0.0314 (14)
O60.0664 (3)0.2896 (2)0.7115 (7)0.0253 (12)
C10.0717 (4)0.1566 (4)0.4500 (9)0.0219 (15)
C20.0997 (4)0.1010 (4)0.3809 (10)0.0261 (17)
C30.0705 (5)0.0434 (4)0.3985 (11)0.038 (2)
H3A0.03400.04180.44510.045*
C40.0948 (6)−0.0106 (4)0.3481 (12)0.047 (3)
H4A0.0750−0.04870.36080.056*
C50.1484 (6)−0.0084 (5)0.2790 (11)0.051 (3)
H5A0.1650−0.04480.24300.062*
C60.1774 (5)0.0479 (5)0.2632 (12)0.043 (2)
H6A0.21470.04840.21940.051*
C70.1542 (4)0.1042 (4)0.3090 (10)0.0303 (19)
C80.1910 (4)0.1616 (4)0.2945 (10)0.0290 (18)
C90.2548 (5)0.1680 (5)0.3969 (12)0.043 (2)
H9A0.27100.13770.47680.051*
C100.2938 (5)0.2178 (5)0.3824 (14)0.049 (3)
H10A0.33590.22090.45290.059*
C110.2722 (5)0.2637 (6)0.2657 (14)0.047 (3)
H11A0.29960.29710.25550.057*
C120.2084 (5)0.2593 (5)0.1633 (10)0.037 (2)
H12A0.19260.29020.08490.045*
C130.1687 (4)0.2091 (4)0.1778 (11)0.0307 (19)
C140.1034 (4)0.2052 (4)0.0510 (10)0.0277 (17)
C150.0564 (4)0.3429 (3)0.6499 (10)0.0226 (16)
C160.0779 (4)0.3973 (3)0.7700 (9)0.0246 (17)
C170.1438 (4)0.3978 (4)0.8573 (10)0.0294 (18)
H17A0.17150.36490.84580.035*
C180.1689 (5)0.4476 (5)0.9620 (12)0.040 (2)
H18A0.21310.44781.02060.048*
C190.1282 (5)0.4962 (4)0.9784 (11)0.041 (2)
H19A0.14520.53001.04580.049*
C200.0622 (5)0.4954 (4)0.8956 (11)0.034 (2)
H20A0.03480.52820.90970.041*
C210.0358 (5)0.4454 (3)0.7900 (10)0.0278 (18)
O70.0919 (4)0.3610 (3)0.2356 (8)0.0474 (18)
H7B0.12180.37080.32700.050*
H7A0.10340.35610.14930.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sm10.0230 (3)0.0164 (3)0.0182 (3)0.0000.0054 (2)0.000
Sm20.0226 (3)0.0174 (3)0.0179 (3)0.0000.0056 (2)0.000
O10.054 (4)0.025 (3)0.033 (3)0.009 (3)0.025 (3)0.005 (2)
O20.025 (3)0.023 (3)0.033 (3)0.005 (2)0.009 (2)0.002 (2)
O30.029 (3)0.031 (3)0.023 (3)0.005 (2)0.009 (2)−0.001 (2)
O40.041 (4)0.032 (3)0.032 (3)0.013 (3)−0.004 (3)−0.007 (2)
O50.047 (4)0.027 (3)0.022 (3)−0.007 (3)0.012 (3)−0.003 (2)
O60.022 (3)0.019 (3)0.037 (3)−0.004 (2)0.011 (2)0.001 (2)
C10.017 (4)0.025 (4)0.024 (4)0.004 (3)0.007 (3)−0.002 (3)
C20.031 (4)0.023 (4)0.023 (4)0.012 (3)0.004 (3)0.000 (3)
C30.051 (6)0.028 (4)0.034 (5)0.002 (4)0.010 (4)0.000 (3)
C40.077 (8)0.024 (5)0.036 (6)0.004 (5)0.007 (5)0.000 (4)
C50.090 (9)0.038 (5)0.018 (5)0.029 (6)−0.001 (5)−0.008 (4)
C60.042 (6)0.047 (6)0.037 (5)0.025 (5)0.004 (4)−0.009 (4)
C70.033 (5)0.035 (5)0.018 (4)0.014 (4)−0.002 (3)−0.004 (3)
C80.021 (4)0.039 (5)0.029 (4)0.010 (3)0.009 (3)−0.010 (3)
C90.031 (5)0.057 (6)0.038 (5)0.022 (5)0.005 (4)−0.015 (4)
C100.022 (5)0.069 (7)0.054 (7)0.004 (5)0.006 (4)−0.028 (5)
C110.032 (5)0.058 (7)0.053 (7)−0.015 (5)0.015 (5)−0.023 (5)
C120.043 (6)0.061 (6)0.010 (4)−0.005 (5)0.012 (4)−0.007 (3)
C130.019 (4)0.037 (5)0.036 (5)0.005 (3)0.006 (3)−0.008 (3)
C140.030 (4)0.027 (4)0.026 (4)−0.004 (3)0.006 (3)0.003 (3)
C150.018 (4)0.021 (4)0.032 (4)0.000 (3)0.013 (3)−0.005 (3)
C160.034 (5)0.019 (4)0.022 (4)−0.006 (3)0.010 (3)−0.002 (3)
C170.034 (5)0.033 (4)0.026 (4)−0.001 (4)0.017 (4)−0.004 (3)
C180.035 (5)0.048 (6)0.037 (5)−0.009 (4)0.011 (4)−0.016 (4)
C190.055 (6)0.040 (5)0.031 (5)−0.017 (5)0.016 (4)−0.017 (4)
C200.049 (6)0.019 (4)0.043 (5)−0.006 (4)0.026 (4)−0.009 (3)
C210.047 (5)0.015 (3)0.027 (4)−0.007 (3)0.019 (4)−0.001 (3)
O70.053 (4)0.052 (4)0.043 (4)−0.026 (4)0.023 (3)−0.018 (3)

Geometric parameters (Å, °)

Sm1—O1i2.321 (6)C4—H4A0.9300
Sm1—O12.321 (6)C5—C61.370 (15)
Sm1—O62.322 (5)C5—H5A0.9300
Sm1—O6i2.322 (5)C6—C71.386 (11)
Sm1—O4ii2.410 (6)C6—H6A0.9300
Sm1—O4iii2.410 (6)C7—C81.469 (13)
Sm1—O3iii2.613 (5)C8—C91.397 (12)
Sm1—O3ii2.613 (5)C8—C131.403 (12)
Sm1—C14iii2.869 (8)C9—C101.362 (15)
Sm1—C14ii2.869 (8)C9—H9A0.9300
Sm2—O2ii2.298 (5)C10—C111.375 (16)
Sm2—O22.298 (5)C10—H10A0.9300
Sm2—O3ii2.469 (6)C11—C121.394 (13)
Sm2—O32.469 (6)C11—H11A0.9300
Sm2—O52.480 (5)C12—C131.377 (13)
Sm2—O5ii2.480 (5)C12—H12A0.9300
Sm2—O72.509 (6)C13—C141.503 (11)
Sm2—O7ii2.509 (6)C14—Sm1iv2.869 (8)
O1—C11.264 (9)C15—C161.527 (10)
O2—C11.263 (9)C16—C171.387 (12)
O3—C141.264 (10)C16—C211.388 (11)
O3—Sm1iv2.613 (5)C17—C181.394 (12)
O4—C141.244 (10)C17—H17A0.9300
O4—Sm1iv2.410 (6)C18—C191.369 (14)
O5—C151.250 (10)C18—H18A0.9300
O6—C151.248 (9)C19—C201.376 (14)
C1—C21.498 (10)C19—H19A0.9300
C2—C31.399 (12)C20—C211.407 (11)
C2—C71.402 (12)C20—H20A0.9300
C3—C41.369 (13)C21—C21i1.477 (18)
C3—H3A0.9300O7—H7B0.8798
C4—C51.370 (16)O7—H7A0.8122
O1i—Sm1—O1114.5 (3)C14—O3—Sm2134.8 (5)
O1i—Sm1—O6150.4 (2)C14—O3—Sm1iv88.3 (5)
O1—Sm1—O687.7 (2)Sm2—O3—Sm1iv123.6 (2)
O1i—Sm1—O6i87.7 (2)C14—O4—Sm1iv98.4 (5)
O1—Sm1—O6i150.4 (2)C15—O5—Sm2132.1 (5)
O6—Sm1—O6i79.7 (3)C15—O6—Sm1135.5 (5)
O1i—Sm1—O4ii76.9 (2)O2—C1—O1123.5 (7)
O1—Sm1—O4ii79.4 (2)O2—C1—C2119.8 (7)
O6—Sm1—O4ii128.6 (2)O1—C1—C2116.7 (7)
O6i—Sm1—O4ii87.7 (2)C3—C2—C7120.1 (8)
O1i—Sm1—O4iii79.4 (2)C3—C2—C1116.4 (8)
O1—Sm1—O4iii76.9 (2)C7—C2—C1123.4 (7)
O6—Sm1—O4iii87.7 (2)C4—C3—C2121.0 (10)
O6i—Sm1—O4iii128.6 (2)C4—C3—H3A119.5
O4ii—Sm1—O4iii135.3 (3)C2—C3—H3A119.5
O1i—Sm1—O3iii77.7 (2)C3—C4—C5119.7 (10)
O1—Sm1—O3iii124.5 (2)C3—C4—H4A120.2
O6—Sm1—O3iii73.45 (19)C5—C4—H4A120.2
O6i—Sm1—O3iii77.39 (19)C6—C5—C4119.4 (9)
O4ii—Sm1—O3iii151.0 (2)C6—C5—H5A120.3
O4iii—Sm1—O3iii51.29 (18)C4—C5—H5A120.3
O1i—Sm1—O3ii124.5 (2)C5—C6—C7123.5 (11)
O1—Sm1—O3ii77.7 (2)C5—C6—H6A118.2
O6—Sm1—O3ii77.39 (19)C7—C6—H6A118.2
O6i—Sm1—O3ii73.45 (19)C6—C7—C2116.3 (9)
O4ii—Sm1—O3ii51.29 (18)C6—C7—C8119.1 (9)
O4iii—Sm1—O3ii151.0 (2)C2—C7—C8124.4 (7)
O3iii—Sm1—O3ii141.8 (2)C9—C8—C13117.0 (9)
O1i—Sm1—C14iii79.8 (2)C9—C8—C7118.0 (8)
O1—Sm1—C14iii99.6 (2)C13—C8—C7124.9 (7)
O6—Sm1—C14iii77.3 (2)C10—C9—C8121.4 (10)
O6i—Sm1—C14iii103.5 (2)C10—C9—H9A119.3
O4ii—Sm1—C14iii153.7 (2)C8—C9—H9A119.3
O4iii—Sm1—C14iii25.4 (2)C9—C10—C11121.5 (9)
O3iii—Sm1—C14iii26.1 (2)C9—C10—H10A119.3
O3ii—Sm1—C14iii154.7 (2)C11—C10—H10A119.3
O1i—Sm1—C14ii99.6 (2)C10—C11—C12118.6 (10)
O1—Sm1—C14ii79.8 (2)C10—C11—H11A120.7
O6—Sm1—C14ii103.5 (2)C12—C11—H11A120.7
O6i—Sm1—C14ii77.3 (2)C13—C12—C11120.2 (10)
O4ii—Sm1—C14ii25.4 (2)C13—C12—H12A119.9
O4iii—Sm1—C14ii153.7 (2)C11—C12—H12A119.9
O3iii—Sm1—C14ii154.7 (2)C12—C13—C8121.4 (8)
O3ii—Sm1—C14ii26.1 (2)C12—C13—C14116.2 (8)
C14iii—Sm1—C14ii179.0 (3)C8—C13—C14122.1 (8)
O2ii—Sm2—O286.4 (3)O4—C14—O3120.9 (8)
O2ii—Sm2—O3ii72.10 (19)O4—C14—C13118.7 (8)
O2—Sm2—O3ii78.1 (2)O3—C14—C13120.2 (7)
O2ii—Sm2—O378.1 (2)O4—C14—Sm1iv56.2 (4)
O2—Sm2—O372.10 (19)O3—C14—Sm1iv65.5 (4)
O3ii—Sm2—O3138.7 (3)C13—C14—Sm1iv164.9 (6)
O2ii—Sm2—O5146.3 (2)O6—C15—O5125.6 (7)
O2—Sm2—O591.4 (2)O6—C15—C16116.1 (7)
O3ii—Sm2—O574.51 (19)O5—C15—C16118.2 (7)
O3—Sm2—O5132.9 (2)C17—C16—C21120.2 (7)
O2ii—Sm2—O5ii91.4 (2)C17—C16—C15116.3 (7)
O2—Sm2—O5ii146.3 (2)C21—C16—C15123.5 (7)
O3ii—Sm2—O5ii132.9 (2)C16—C17—C18120.3 (8)
O3—Sm2—O5ii74.51 (19)C16—C17—H17A119.9
O5—Sm2—O5ii108.0 (3)C18—C17—H17A119.9
O2ii—Sm2—O7147.4 (2)C19—C18—C17119.8 (9)
O2—Sm2—O794.7 (2)C19—C18—H18A120.1
O3ii—Sm2—O7140.0 (2)C17—C18—H18A120.1
O3—Sm2—O771.3 (2)C18—C19—C20120.4 (8)
O5—Sm2—O766.4 (2)C18—C19—H19A119.8
O5ii—Sm2—O769.9 (2)C20—C19—H19A119.8
O2ii—Sm2—O7ii94.7 (2)C19—C20—C21120.7 (9)
O2—Sm2—O7ii147.4 (2)C19—C20—H20A119.6
O3ii—Sm2—O7ii71.3 (2)C21—C20—H20A119.6
O3—Sm2—O7ii140.0 (2)C16—C21—C20118.6 (8)
O5—Sm2—O7ii69.9 (2)C16—C21—C21i122.8 (6)
O5ii—Sm2—O7ii66.4 (2)C20—C21—C21i118.5 (7)
O7—Sm2—O7ii101.4 (4)Sm2—O7—H7B119.9
C1—O1—Sm1137.2 (5)Sm2—O7—H7A110.3
C1—O2—Sm2144.0 (5)H7B—O7—H7A119.3

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, y, −z+1/2; (iii) x, y, z+1; (iv) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2091).

References

  • Barta, C. A., Bayly, S. R., Read, P. W., Patrick, B. O., Thompson, R. C. & Orvig, C. (2008). Inorg. Chem. 47, 2280–2293. [PubMed]
  • Bettencourt-Dias, A. de (2005). Inorg. Chem. 44, 2734–2741. [PubMed]
  • Chen, F. F., Qian, Z. Q., Liu, Z. W., Nie, D. B., Chen, Z. Q. & Huang, C. H. (2008). Inorg. Chem. 47, 2507–2513. [PubMed]
  • Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Lin, Z.-Z., Jiang, F.-L., Chen, L., Yuan, D.-P. & Hong, M.-C. (2005). Inorg. Chem. 44, 73–76. [PubMed]
  • Liu, Q. Y. & Xu, L. (2005). Eur. J. Inorg. Chem. pp. 3458–3466.
  • Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Rui, Y., Yu-Qi, L. & Wen, Y. (2007). Acta Cryst. E63, m2899–m2900.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taniguchi, M. & Takahei, K. (1993). J. Appl. Phys. 73, 943–948.
  • Thirumurugan, A., Pati, S. K., Green, M. A. & Natarajan, S. (2003). J. Mater. Chem. 13, 2937–2941.
  • Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851–1857.
  • Wang, Y.-B., Zheng, X.-J., Zhuang, W.-J. & Jin, L.-P. (2003). Eur. J. Inorg. Chem. pp. 1355–1360.
  • Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029–2035.
  • Yigit, M. V., Biyikli, K., Moulton, B. & MacDonald, J. C. (2006). Cryst. Growth Des. 6, 63–69.
  • Zheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J. & Wang, X.-W. (2008). Inorg. Chem. 47, 10280–10287. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography