PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1561.
Published online 2009 November 11. doi:  10.1107/S1600536809045462
PMCID: PMC2972100

catena-Poly[[diaqua­zinc(II)]-μ-piper­azine-1,4-diacetato-κ4 N 1,O 1:N 4,O 4]

Abstract

The asymmetric unit of the title compound, [Zn(C8H12N2O4)(H2O)2]n, contains a ZnII ion residing on an inversion center, half of a centrosymmetric piperazine-1,4-diacetate ligand (L) and a water mol­ecule. The ZnII ion is trans-coordinated by two N,O-bidentate L ligands and by two water mol­ecules in a distorted octa­hedral geometry. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link polymeric chains into a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Wu & Mak (1996 [triangle]); Zhang & Chen (2003 [triangle]); Shen et al. (2006 [triangle]); Yang et al. (2008 [triangle]); Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1561-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H12N2O4)(H2O)2]
  • M r = 301.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1561-efi1.jpg
  • a = 6.3670 (1) Å
  • b = 7.3116 (10) Å
  • c = 11.9910 (1) Å
  • β = 101.438 (10)°
  • V = 547.13 (1) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.27 mm−1
  • T = 291 K
  • 0.30 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.517, T max = 0.766
  • 5254 measured reflections
  • 1255 independent reflections
  • 1173 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.050
  • S = 1.07
  • 1255 reflections
  • 87 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045462/cv2645sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045462/cv2645Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is indebted to the National Natural Science Foundation of China (grant No. 20871039) for financial support.

supplementary crystallographic information

Comment

Researchers have shown their interest in design and synthesis of polydentate flexible ligands, which propagated a family of piperazine-based ligands, because the chair configuration of piperazine can reduce their coordination modes, which makes piperazine or its related species structurally or functionally directing polymeric constructions (Shen et al., 2006; Wu et al., 1996; Yang et al., 2008; Zhang et al., 2008; Zhang et al., 2003). Herein, based on bridging 1,4-piperazinediacetic acid, we report the title compound and present its crystal structure.

The coordination geometry about Zn(II) center is shown in Fig.1. The Zn(II) center adopts an octahedral coordination geometry, in which two N atoms and two O atoms from two ligands are in the equatorial plane while the apical positions are occupied by two O atoms from water molecules. Intermolecular O—H···O hydrogen bonds (Table 1) link polymeric chains into three-dimensional supramolecular structure.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. A mixture of H2L.2HCl (0.1 mmol), ZnCl2 (0.1 mmol), and water (10 ml) were heated in a 15-ml Teflon-lined vessel at 120 oC for 3 days, followed by slow cooling (5 oC h-1) to room temperature. After filtration and washing with H2O, colorless block crystals were collected and dried in air. Anal. Calcd.for C8H16N2O6Zn: C, 31.86; H, 5.35; N, 9.29. Found: C, 31.88; H,5.39; N, 9.22.

Refinement

C-bound H atoms weregeometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). Atoms H3A and H3B were located on a difference map, and refined with bond restraint O—H = 0.82 (2) Å as riding, with Uiso(H)=Ueq(O).

Figures

Fig. 1.
A portion of the polymeric chain in (I) showing 30% probability displacement ellipsoids and the atomic numbering [symmetry codes: (A) 1 - x, -y, 1 - z; (B) -x, -y, 1 - z].

Crystal data

[Zn(C8H12N2O4)(H2O)2]F(000) = 312.0
Mr = 301.62Dx = 1.831 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1255 reflections
a = 6.3670 (1) Åθ = 3.3–27.5°
b = 7.3116 (1) ŵ = 2.27 mm1
c = 11.9910 (1) ÅT = 291 K
β = 101.438 (1)°Block, colourless
V = 547.13 (1) Å30.30 × 0.15 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1255 independent reflections
Radiation source: fine-focus sealed tube1173 reflections with I > 2σ(I)
graphiteRint = 0.014
[var phi] and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→8
Tmin = 0.517, Tmax = 0.766k = −7→9
5254 measured reflectionsl = −15→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0264P)2 + 0.2196P] where P = (Fo2 + 2Fc2)/3
1255 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = −0.17 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3930 (2)0.34321 (18)0.39316 (11)0.0202 (3)
C20.2110 (2)0.32565 (19)0.45839 (13)0.0246 (3)
H2A0.24840.39360.52900.029*
H2B0.08260.38040.41370.029*
C30.0594 (2)0.1341 (2)0.58516 (12)0.0223 (3)
H3C−0.06580.21270.57010.027*
H3D0.15810.18310.65050.027*
C40.0075 (2)0.0568 (2)0.38757 (12)0.0221 (3)
H4A0.07140.05280.32060.026*
H4B−0.11790.13500.37090.026*
H3A0.547 (3)0.101 (3)0.7111 (15)0.043 (6)*
H3B0.607 (3)0.255 (2)0.6608 (17)0.042 (6)*
N10.16401 (17)0.13433 (15)0.48462 (10)0.0198 (2)
O10.3977 (2)0.48174 (13)0.33348 (10)0.0299 (2)
O20.53370 (15)0.22018 (14)0.40554 (9)0.0263 (2)
O30.59517 (17)0.14245 (15)0.65815 (9)0.0265 (2)
Zn10.50000.00000.50000.02027 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0241 (6)0.0172 (6)0.0196 (6)−0.0029 (5)0.0052 (5)−0.0009 (5)
C20.0228 (6)0.0188 (7)0.0346 (8)0.0020 (5)0.0116 (6)0.0021 (6)
C30.0198 (6)0.0264 (7)0.0224 (7)−0.0021 (5)0.0080 (5)−0.0027 (5)
C40.0188 (6)0.0276 (7)0.0205 (6)−0.0001 (5)0.0054 (5)0.0020 (6)
N10.0185 (5)0.0198 (5)0.0228 (6)−0.0020 (4)0.0081 (4)0.0006 (4)
O10.0418 (6)0.0197 (5)0.0307 (6)0.0016 (4)0.0131 (5)0.0068 (4)
O20.0255 (5)0.0224 (5)0.0351 (6)0.0040 (4)0.0162 (4)0.0083 (4)
O30.0328 (5)0.0225 (5)0.0270 (5)−0.0011 (4)0.0125 (4)−0.0019 (4)
Zn10.02321 (13)0.01652 (13)0.02233 (13)0.00056 (7)0.00751 (9)0.00295 (8)

Geometric parameters (Å, °)

C1—O11.2439 (17)C4—C3i1.514 (2)
C1—O21.2575 (16)C4—H4A0.9700
C1—C21.5269 (18)C4—H4B0.9700
C2—N11.4773 (17)N1—Zn12.3278 (11)
C2—H2A0.9700O2—Zn12.0042 (10)
C2—H2B0.9700O3—Zn12.1430 (11)
C3—N11.4884 (16)O3—H3A0.814 (15)
C3—C4i1.514 (2)O3—H3B0.825 (16)
C3—H3C0.9700Zn1—O2ii2.0042 (10)
C3—H3D0.9700Zn1—O3ii2.1430 (11)
C4—N11.4864 (18)Zn1—N1ii2.3278 (11)
O1—C1—O2123.53 (12)C4—N1—C3107.18 (10)
O1—C1—C2118.08 (12)C2—N1—Zn1101.23 (7)
O2—C1—C2118.34 (12)C4—N1—Zn1111.36 (8)
N1—C2—C1113.26 (11)C3—N1—Zn1119.15 (8)
N1—C2—H2A108.9C1—O2—Zn1119.19 (8)
C1—C2—H2A108.9Zn1—O3—H3A115.2 (15)
N1—C2—H2B108.9Zn1—O3—H3B121.7 (14)
C1—C2—H2B108.9H3A—O3—H3B112 (2)
H2A—C2—H2B107.7O2ii—Zn1—O2180.0
N1—C3—C4i111.49 (11)O2ii—Zn1—O386.18 (4)
N1—C3—H3C109.3O2—Zn1—O393.82 (4)
C4i—C3—H3C109.3O2ii—Zn1—O3ii93.82 (4)
N1—C3—H3D109.3O2—Zn1—O3ii86.18 (4)
C4i—C3—H3D109.3O3—Zn1—O3ii180.0
H3C—C3—H3D108.0O2ii—Zn1—N1100.60 (4)
N1—C4—C3i110.87 (11)O2—Zn1—N179.40 (4)
N1—C4—H4A109.5O3—Zn1—N187.66 (4)
C3i—C4—H4A109.5O3ii—Zn1—N192.34 (4)
N1—C4—H4B109.5O2ii—Zn1—N1ii79.40 (4)
C3i—C4—H4B109.5O2—Zn1—N1ii100.60 (4)
H4A—C4—H4B108.1O3—Zn1—N1ii92.34 (4)
C2—N1—C4109.09 (11)O3ii—Zn1—N1ii87.66 (4)
C2—N1—C3108.39 (10)N1—Zn1—N1ii180.00 (6)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O1iii0.81 (2)2.00 (2)2.8060 (16)173 (2)
O3—H3B···O1iv0.83 (2)1.93 (2)2.7497 (15)175 (2)

Symmetry codes: (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2645).

References

  • Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, L., Wang, F.-W., Cheng, A.-B. & Yang, S. (2006). Acta Cryst. E62, o2242–o2244.
  • Wu, D. D. & Mak, T. C. W. (1996). Inorg. Chim. Acta, 253, m15–m21.
  • Yang, J., Lu, N., Zhang, G., Cheng, L. & Gou, S. H. (2008). Polyhedron, 27, m2119–m2126.
  • Zhang, X. M. & Chen, X. M. (2003). Inorg. Chem. Commun. 6, m206–m209.
  • Zhang, R. F., Shi, W. & Cheng, P. (2008). Chin. J. Inorg. Chem. 24, m1272–m1277.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography