PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3265–o3266.
Published online 2009 November 28. doi:  10.1107/S1600536809050478
PMCID: PMC2972099

(20S,2′′S)-20-[4′-(3′′-Hydroxy-2′′-methyl­prop­yl)-3′-methylisoxazol-5-yl]-5β-preg­nan-3β,16β-diol

Abstract

The title steroidal compound, C29H47NO4, was prepared in a one-pot reaction starting from a sarsasapogenin derivative of known configuration. The isoxazole heterocycle is oriented towards the α face of the steroid nucleus and, although fully functionalized on C atoms, does not provoke steric hindrance with the adjacent D ring. The absolute configuration observed for chiral centers is as expected, and shows that no epimerization occurred in the precursors. In the crystal, the three OH groups serve as donors for hydrogen bonding with O and N atoms. The isoxazole N atom is involved in O—H(...)N hydrogen bonds, forming chains along [100]. These chains are further connected via O—H(...)O and weak C—H(...)O contacts, giving rise to a three-dimensional supra­molecular network.

Related literature

For a general introduction to steroids functionalized with heterocycles, see: Banday et al. (2008 [triangle]); Pathak & Jindal (1998 [triangle]); Litvinovskaya et al. (1998 [triangle]); Beam et al. (2000 [triangle]). For the biological activity of danazol, a steroid sharing structural features with the title compound, see: Gupta et al. (1999 [triangle]). For 23-acetylsarsasapogenin, used as starting material, see: Meza-Reyes et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3265-scheme1.jpg

Experimental

Crystal data

  • C29H47NO4
  • M r = 473.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3265-efi1.jpg
  • a = 6.5540 (8) Å
  • b = 30.131 (4) Å
  • c = 7.1971 (10) Å
  • β = 98.500 (13)°
  • V = 1405.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 296 K
  • 0.6 × 0.2 × 0.2 mm

Data collection

  • Bruker P4 diffractometer
  • 8425 measured reflections
  • 2534 independent reflections
  • 2003 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.092
  • S = 1.07
  • 2534 reflections
  • 322 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050478/jj2015sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050478/jj2015Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT, grant 83049).

supplementary crystallographic information

Comment

There is a continuous interest for new synthetic routes affording steroids functionalized with heteroatoms and heterocycles, since these groups modify the biological activity of related molecules (Banday et al., 2008; Pathak & Jindal, 1998). For example, the synthesis of suitable precursors for steroids analogs to brassinosteroids has been reported (Litvinovskaya et al., 1998). Functionalization with an isoxazol heterocycle has been limited to date to few examples, where the heterocycle is fused with the A ring of the steroid. An example of a molecule belonging to this family is danazol (Gupta et al., 1999), a derivative of ethisterone, which has numerous medicinal applications.

In relation with this general goal, we have developed several reagents for the direct one-step functionalization of steroids on remote positions. The title compound was synthesized readily starting from 23-acetylsarsasapogenin (Meza-Reyes et al., 2005) in a one-pot reaction carried out in dry media (see Experimental). This new route improves known procedures, which make necessary the isolation of an oxime intermediate, prior to the heterocyclization in acid conditions (Beam et al., 2000). Full details about the involved chemistry and mechanistic aspects of this unprecedented reaction will be reported elsewhere. It was however essential to X-ray characterize the product, in order to determine if any epimerization occurred during the cleavage of rings E and F.

The title molecule displays the expected cis-fused A/B ring system, characteristic of sarsasapogenin derivatives (Fig. 1). Rings A,B and C have the expected chair conformation, while the 5-membered ring D is twisted on C13—C14. The spiroketal E/F system was cleaved during the reaction, affording a C21-pregnane nucleus substituted at C20 by an isoxazol heterocycle. Positions for O and N atoms in the heterocycle were unambiguously determined from X-ray data, and are consistent with the positions for double bonds, C22=C26 and C25=N24. The isoxazol ring is oriented towards the α face, and its plane approximately bisects the mean plane of the A···D steroidal nucleus. This conformation avoids any hindrance with the methyl group, C21, and OH group at C16. The observed absolute configuration indicates that the E/F rings cleavage occurred without epimerization, despite use of the strongly acidic medium used for the reaction. C20 is retained as S, and the chiral C atom C29 in the lateral chain has the S configuration.

In the crystal, molecules are associated via O—H···N hydrogen bonds involving the isoxalic N atom as an acceptor, forming chains running along the [100] direction (Fig. 2). The hydroxyl groups at O32 and O34, form O—H···O contacts between chains. The resulting three-dimensional supramolecular network also includes weak C—H···O hydrogen bond interactions involving the O23 and O24 atoms as acceptors.

Experimental

A mixture of 23-acetylsarsasapogenin (2 mmol), hydroxylamine hydrochloride (4 mmol) and a previously prepared P2O5/SiO2 reagent (1 g) were grounded thoroughly in a mortar. An immediate color change was observed. The mortar was covered with a watch glass and put inside a microwave device (2450 MHz, 1200 W). The mixture was irradiated for 3 min, allowing the reaction to complete (TLC). The mixture was then cooled to room temperature, and 10 ml of 5% aqueous HCl was added. The resulting solution was extracted with CH2Cl2 (2×10 ml) and dried over CaCl2. Evaporation of solvent under reduced pressure gave the pure title compound, in 81% yield. Anal. found (calc. for C29H47NO4): C 73.52 (75.53), H 9.98 (9.99), N 2.95 (2.95%). Single crystals were obtained by slow evaporation of an acetone solution.

Refinement

H atoms for hydroxyl groups, H32, H33 and H34, were found in a difference map and refined freely. C-bonded H atoms were placed in idealized positions and refined using a riding approximation, with C—H bond lengths fixed to 0.96 (methyl), 0.97 (methylene) or 0.98 Å (methine). Methyl groups were allowed to rotate about their C—C bonds. Isotropic displacement parameters for H atoms were computed from displacement of carrier atoms: Uiso(H) = 1.5Ueq(carrier atom) for methyl and hydroxyl groups, and Uiso(H) = 1.2Ueq(carrier C) for other H atoms.

Figures

Fig. 1.
The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level.
Fig. 2.
Packing diagram for (I) viewed down the c axis. Dashed lines indicate O—H···O and O—H···N intermolecular hydrogen bonds. Weak C—H···O intermolecular interactions ...

Crystal data

C29H47NO4F(000) = 520
Mr = 473.68Dx = 1.119 Mg m3
Monoclinic, P21Melting point: 500 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.5540 (8) ÅCell parameters from 64 reflections
b = 30.131 (4) Åθ = 3.7–11.9°
c = 7.1971 (10) ŵ = 0.07 mm1
β = 98.500 (13)°T = 296 K
V = 1405.6 (3) Å3Needle, colorless
Z = 20.6 × 0.2 × 0.2 mm

Data collection

Bruker P4 diffractometerRint = 0.030
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
graphiteh = −7→7
ω scansk = −35→35
8425 measured reflectionsl = −8→8
2534 independent reflections3 standard reflections every 97 reflections
2003 reflections with I > 2σ(I) intensity decay: <1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092w = 1/[σ2(Fo2) + (0.041P)2 + 0.1586P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2534 reflectionsΔρmax = 0.13 e Å3
322 parametersΔρmin = −0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.026 (2)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Colourless crystals, m.p. 227-228°C (acetone); [α]D -106.4° (c 1.0, EtOH); IR ν max (cm-1): 3386, 3355, 3321, 2933, 2821, 1629. 1H-NMR δ: 4.12 (1H, s, H-3), 3.97 (1H, m, H-16), 3.51 and 3.47 (2H, ABX system, J3'',2'' = 6 Hz, Jgem = 11 Hz, H-3''), 3.30 (1H, dc, J20,17 = 9 Hz and J20,21 = 7 Hz, H-20), 2.47 and 2.16 (2H, dd, J1 = J2 = 8 Hz, H-1''), 2.22 (3H, s, CH3-3'), 1.28 (3H, d, J21,20 = 7 Hz, CH3-21), 0.98 (3H, s, CH3-19), 0.95 (3H, d, J = 6 Hz, CH3-2''), 0.93 (3H, s, CH3-18). 13C-NMR, δ: 10.7 (CH3-3'), 13.2 (C-18), 17.0 (C-21), 19.4 (CH3-2''), 20.9 (C-11), 24.0 (C-19), 26.1 (C-1''), 26.2 (C-7), 26.6 (C-1), 27.8 (C-12), 29.0 (C-20), 29.9 (C-2), 33.5 (C-15), 35.2 (C-6), 35.2 (C-8), 36.1 (C-9), 36.4 (C-13), 36.5 (C-5), 39.8 (C-2''), 40.4 (C-4), 42.6 (C-10), 53.9 (C-14), 58.8 (C-17), 67.0 (C-3), 67.5 (C-3''), 72.5 (C-16), 109.9 (C-5'), 159.7 (C-3', C=N), 173.0 (C-4').

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6068 (5)0.66437 (9)0.3655 (4)0.0550 (8)
H1B0.71080.68740.36890.066*
H1C0.54380.66080.23570.066*
C20.4435 (5)0.67967 (10)0.4788 (5)0.0647 (9)
H2A0.33220.65810.46690.078*
H2B0.38680.70770.42930.078*
C30.5310 (6)0.68522 (11)0.6842 (5)0.0726 (9)
H3A0.41850.69220.75510.087*
C40.6348 (6)0.64271 (11)0.7600 (5)0.0747 (10)
H4A0.53050.61990.76160.090*
H4B0.69910.64760.88870.090*
C50.7976 (5)0.62606 (10)0.6460 (4)0.0622 (8)
H5A0.90720.64840.65650.075*
C60.8957 (7)0.58263 (12)0.7296 (5)0.0806 (11)
H6B1.01920.57650.67450.097*
H6C0.93640.58640.86380.097*
C70.7507 (7)0.54323 (11)0.6954 (5)0.0737 (10)
H7A0.63480.54770.76290.088*
H7B0.82270.51660.74430.088*
C80.6706 (5)0.53673 (9)0.4874 (4)0.0524 (7)
H8A0.78840.53030.42210.063*
C90.5657 (5)0.57996 (9)0.4041 (4)0.0467 (6)
H9D0.45310.58610.47600.056*
C100.7136 (4)0.62065 (9)0.4332 (4)0.0504 (7)
C110.4650 (5)0.57340 (9)0.1993 (4)0.0531 (7)
H11B0.38370.59950.15930.064*
H11C0.57290.57110.12100.064*
C120.3259 (5)0.53243 (9)0.1663 (4)0.0534 (7)
H12A0.28000.52900.03270.064*
H12B0.20490.53680.22720.064*
C130.4376 (4)0.48992 (8)0.2428 (4)0.0448 (6)
C140.5181 (5)0.49856 (9)0.4517 (4)0.0519 (7)
H14C0.39780.50710.50980.062*
C150.5816 (6)0.45203 (10)0.5279 (4)0.0640 (9)
H15C0.71320.44330.49310.077*
H15D0.59070.45100.66350.077*
C160.4078 (5)0.42238 (9)0.4337 (4)0.0531 (7)
H16B0.30740.41960.52130.064*
C170.2987 (4)0.44850 (9)0.2579 (4)0.0476 (7)
H17C0.16900.45970.29230.057*
C180.6125 (5)0.47874 (10)0.1303 (4)0.0528 (7)
H18A0.71160.50240.14320.079*
H18B0.55670.47510.00010.079*
H18C0.67840.45170.17720.079*
C190.8950 (5)0.61529 (13)0.3227 (6)0.0778 (10)
H19B0.84340.61230.19130.117*
H19C0.97250.58930.36550.117*
H19D0.98270.64090.34200.117*
C200.2387 (5)0.41917 (9)0.0833 (4)0.0504 (7)
H20B0.36540.40670.04780.061*
C210.1250 (5)0.44472 (10)−0.0881 (5)0.0631 (8)
H21C0.07560.4241−0.18610.095*
H21D0.21840.4653−0.13310.095*
H21E0.01050.4606−0.05150.095*
C220.1037 (4)0.38157 (9)0.1246 (4)0.0499 (7)
O23−0.0587 (3)0.39290 (7)0.2120 (4)0.0703 (7)
N24−0.1752 (4)0.35417 (10)0.2322 (4)0.0703 (8)
C25−0.0791 (5)0.32195 (10)0.1605 (4)0.0538 (7)
C260.1011 (4)0.33757 (9)0.0881 (4)0.0445 (6)
C27−0.1567 (5)0.27556 (11)0.1658 (5)0.0661 (9)
H27D−0.27180.27480.23400.099*
H27E−0.04870.25680.22680.099*
H27F−0.19940.26520.03990.099*
C280.2554 (4)0.31208 (9)−0.0033 (4)0.0474 (6)
H28C0.24990.28120.03340.057*
H28D0.39220.32310.04460.057*
C290.2250 (5)0.31457 (10)−0.2173 (4)0.0554 (7)
H29C0.21550.3459−0.25450.067*
C300.0285 (6)0.2913 (2)−0.3036 (6)0.123 (2)
H30B0.01670.2925−0.43810.185*
H30C−0.08820.3059−0.26410.185*
H30D0.03250.2609−0.26330.185*
C310.4103 (5)0.29436 (10)−0.2882 (4)0.0624 (8)
H31C0.53250.3107−0.23510.075*
H31D0.42660.2641−0.24290.075*
O320.3985 (5)0.29406 (8)−0.4864 (3)0.0788 (8)
H320.411 (8)0.3187 (17)−0.533 (7)0.118*
O330.4750 (3)0.37840 (6)0.3970 (3)0.0570 (6)
H330.584 (6)0.3790 (14)0.345 (5)0.086*
O340.6814 (5)0.71965 (8)0.7127 (4)0.0898 (9)
H340.633 (9)0.743 (2)0.640 (8)0.135*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0655 (19)0.0375 (15)0.0597 (18)−0.0086 (14)0.0013 (15)0.0075 (13)
C20.0618 (19)0.0362 (16)0.093 (3)0.0006 (14)0.0010 (18)0.0017 (16)
C30.095 (3)0.0424 (17)0.083 (2)0.0033 (18)0.023 (2)−0.0076 (16)
C40.121 (3)0.0451 (18)0.058 (2)0.007 (2)0.011 (2)−0.0015 (15)
C50.079 (2)0.0448 (17)0.0573 (19)0.0017 (15)−0.0073 (16)0.0000 (14)
C60.103 (3)0.059 (2)0.069 (2)0.020 (2)−0.025 (2)−0.0043 (16)
C70.113 (3)0.0437 (17)0.0565 (19)0.0123 (18)−0.0130 (19)0.0027 (15)
C80.0696 (18)0.0367 (14)0.0490 (15)0.0109 (14)0.0029 (14)0.0027 (12)
C90.0567 (16)0.0361 (14)0.0479 (15)0.0046 (12)0.0099 (13)0.0014 (11)
C100.0530 (16)0.0428 (16)0.0547 (17)0.0034 (13)0.0049 (13)0.0003 (13)
C110.0653 (18)0.0342 (14)0.0564 (17)0.0034 (13)−0.0019 (14)0.0071 (12)
C120.0599 (17)0.0362 (14)0.0618 (18)0.0071 (14)0.0009 (14)0.0048 (13)
C130.0552 (16)0.0327 (14)0.0479 (15)0.0084 (12)0.0124 (13)0.0024 (11)
C140.0733 (19)0.0364 (14)0.0471 (16)0.0132 (13)0.0124 (14)0.0045 (12)
C150.103 (3)0.0400 (16)0.0488 (16)0.0108 (17)0.0088 (17)0.0070 (13)
C160.075 (2)0.0361 (15)0.0540 (16)0.0108 (14)0.0284 (15)0.0070 (13)
C170.0568 (16)0.0341 (14)0.0555 (16)0.0111 (12)0.0205 (13)0.0027 (12)
C180.0611 (17)0.0425 (15)0.0582 (17)0.0037 (14)0.0198 (14)0.0022 (13)
C190.064 (2)0.083 (3)0.090 (3)−0.009 (2)0.0209 (19)−0.003 (2)
C200.0600 (17)0.0341 (14)0.0601 (17)0.0051 (13)0.0185 (14)0.0018 (13)
C210.079 (2)0.0459 (17)0.0633 (19)0.0029 (16)0.0076 (16)0.0018 (14)
C220.0503 (16)0.0408 (15)0.0615 (17)0.0074 (13)0.0175 (13)0.0019 (13)
O230.0679 (14)0.0463 (12)0.1057 (18)0.0066 (11)0.0431 (13)−0.0007 (11)
N240.0619 (16)0.0570 (16)0.099 (2)0.0012 (14)0.0343 (15)0.0019 (15)
C250.0506 (16)0.0491 (17)0.0618 (18)−0.0001 (13)0.0082 (13)0.0058 (14)
C260.0462 (15)0.0391 (14)0.0484 (15)0.0026 (12)0.0076 (12)0.0026 (12)
C270.0631 (19)0.0566 (19)0.077 (2)−0.0153 (16)0.0056 (16)0.0095 (16)
C280.0504 (15)0.0388 (14)0.0523 (16)0.0052 (12)0.0055 (12)−0.0025 (12)
C290.0638 (18)0.0488 (16)0.0545 (17)0.0065 (14)0.0117 (14)0.0048 (13)
C300.077 (2)0.224 (7)0.065 (2)−0.029 (3)0.000 (2)−0.032 (3)
C310.087 (2)0.0444 (17)0.0610 (19)0.0047 (16)0.0275 (16)0.0000 (15)
O320.139 (2)0.0432 (12)0.0641 (14)−0.0046 (14)0.0467 (14)0.0002 (11)
O330.0660 (13)0.0314 (10)0.0785 (14)0.0066 (9)0.0266 (11)0.0099 (10)
O340.128 (2)0.0423 (13)0.0880 (19)−0.0053 (14)−0.0196 (17)−0.0085 (12)

Geometric parameters (Å, °)

C1—C21.511 (5)C16—O331.433 (3)
C1—C101.537 (4)C16—C171.569 (4)
C1—H1B0.9700C16—H16B0.9800
C1—H1C0.9700C17—C201.539 (4)
C2—C31.514 (5)C17—H17C0.9800
C2—H2A0.9700C18—H18A0.9600
C2—H2B0.9700C18—H18B0.9600
C3—O341.425 (4)C18—H18C0.9600
C3—C41.514 (5)C19—H19B0.9600
C3—H3A0.9800C19—H19C0.9600
C4—C51.524 (5)C19—H19D0.9600
C4—H4A0.9700C20—C221.494 (4)
C4—H4B0.9700C20—C211.549 (4)
C5—C61.540 (5)C20—H20B0.9800
C5—C101.558 (4)C21—H21C0.9600
C5—H5A0.9800C21—H21D0.9600
C6—C71.518 (5)C21—H21E0.9600
C6—H6B0.9700C22—C261.351 (4)
C6—H6C0.9700C22—O231.358 (3)
C7—C81.524 (4)O23—N241.414 (3)
C7—H7A0.9700N24—C251.304 (4)
C7—H7B0.9700C25—C261.438 (4)
C8—C141.521 (4)C25—C271.490 (4)
C8—C91.551 (4)C26—C281.497 (4)
C8—H8A0.9800C27—H27D0.9600
C9—C111.536 (4)C27—H27E0.9600
C9—C101.558 (4)C27—H27F0.9600
C9—H9D0.9800C28—C291.525 (4)
C10—C191.534 (4)C28—H28C0.9700
C11—C121.532 (4)C28—H28D0.9700
C11—H11B0.9700C29—C311.513 (4)
C11—H11C0.9700C29—C301.517 (5)
C12—C131.536 (4)C29—H29C0.9800
C12—H12A0.9700C30—H30B0.9600
C12—H12B0.9700C30—H30C0.9600
C13—C181.535 (4)C30—H30D0.9600
C13—C141.540 (4)C31—O321.417 (4)
C13—C171.558 (4)C31—H31C0.9700
C14—C151.540 (4)C31—H31D0.9700
C14—H14C0.9800O32—H320.82 (5)
C15—C161.525 (5)O33—H330.85 (4)
C15—H15C0.9700O34—H340.90 (6)
C15—H15D0.9700
C2—C1—C10114.6 (3)C16—C15—H15C111.1
C2—C1—H1B108.6C14—C15—H15C111.1
C10—C1—H1B108.6C16—C15—H15D111.1
C2—C1—H1C108.6C14—C15—H15D111.1
C10—C1—H1C108.6H15C—C15—H15D109.1
H1B—C1—H1C107.6O33—C16—C15113.2 (3)
C1—C2—C3111.4 (3)O33—C16—C17115.5 (2)
C1—C2—H2A109.4C15—C16—C17106.6 (2)
C3—C2—H2A109.4O33—C16—H16B107.0
C1—C2—H2B109.4C15—C16—H16B107.0
C3—C2—H2B109.4C17—C16—H16B107.0
H2A—C2—H2B108.0C20—C17—C13119.0 (2)
O34—C3—C2112.0 (3)C20—C17—C16113.6 (2)
O34—C3—C4107.5 (3)C13—C17—C16104.9 (2)
C2—C3—C4110.1 (3)C20—C17—H17C106.2
O34—C3—H3A109.1C13—C17—H17C106.2
C2—C3—H3A109.1C16—C17—H17C106.2
C4—C3—H3A109.1C13—C18—H18A109.5
C3—C4—C5113.4 (3)C13—C18—H18B109.5
C3—C4—H4A108.9H18A—C18—H18B109.5
C5—C4—H4A108.9C13—C18—H18C109.5
C3—C4—H4B108.9H18A—C18—H18C109.5
C5—C4—H4B108.9H18B—C18—H18C109.5
H4A—C4—H4B107.7C10—C19—H19B109.5
C4—C5—C6110.8 (3)C10—C19—H19C109.5
C4—C5—C10112.9 (3)H19B—C19—H19C109.5
C6—C5—C10111.2 (3)C10—C19—H19D109.5
C4—C5—H5A107.2H19B—C19—H19D109.5
C6—C5—H5A107.2H19C—C19—H19D109.5
C10—C5—H5A107.2C22—C20—C17111.1 (2)
C7—C6—C5112.7 (3)C22—C20—C21107.8 (2)
C7—C6—H6B109.1C17—C20—C21113.6 (2)
C5—C6—H6B109.1C22—C20—H20B108.1
C7—C6—H6C109.1C17—C20—H20B108.1
C5—C6—H6C109.1C21—C20—H20B108.1
H6B—C6—H6C107.8C20—C21—H21C109.5
C6—C7—C8112.1 (3)C20—C21—H21D109.5
C6—C7—H7A109.2H21C—C21—H21D109.5
C8—C7—H7A109.2C20—C21—H21E109.5
C6—C7—H7B109.2H21C—C21—H21E109.5
C8—C7—H7B109.2H21D—C21—H21E109.5
H7A—C7—H7B107.9C26—C22—O23110.4 (3)
C14—C8—C7112.7 (3)C26—C22—C20134.1 (3)
C14—C8—C9109.1 (2)O23—C22—C20115.4 (2)
C7—C8—C9109.9 (2)C22—O23—N24108.2 (2)
C14—C8—H8A108.4C25—N24—O23105.9 (2)
C7—C8—H8A108.4N24—C25—C26111.7 (3)
C9—C8—H8A108.4N24—C25—C27120.1 (3)
C11—C9—C8111.5 (2)C26—C25—C27128.1 (3)
C11—C9—C10113.6 (2)C22—C26—C25103.8 (2)
C8—C9—C10112.2 (2)C22—C26—C28126.8 (3)
C11—C9—H9D106.3C25—C26—C28129.5 (3)
C8—C9—H9D106.3C25—C27—H27D109.5
C10—C9—H9D106.3C25—C27—H27E109.5
C19—C10—C1106.1 (3)H27D—C27—H27E109.5
C19—C10—C5109.4 (3)C25—C27—H27F109.5
C1—C10—C5107.5 (2)H27D—C27—H27F109.5
C19—C10—C9111.2 (2)H27E—C27—H27F109.5
C1—C10—C9112.7 (2)C26—C28—C29115.0 (2)
C5—C10—C9109.7 (2)C26—C28—H28C108.5
C12—C11—C9114.4 (2)C29—C28—H28C108.5
C12—C11—H11B108.7C26—C28—H28D108.5
C9—C11—H11B108.7C29—C28—H28D108.5
C12—C11—H11C108.7H28C—C28—H28D107.5
C9—C11—H11C108.7C31—C29—C30110.6 (3)
H11B—C11—H11C107.6C31—C29—C28109.2 (2)
C11—C12—C13112.0 (2)C30—C29—C28111.5 (3)
C11—C12—H12A109.2C31—C29—H29C108.5
C13—C12—H12A109.2C30—C29—H29C108.5
C11—C12—H12B109.2C28—C29—H29C108.5
C13—C12—H12B109.2C29—C30—H30B109.5
H12A—C12—H12B107.9C29—C30—H30C109.5
C18—C13—C12110.3 (2)H30B—C30—H30C109.5
C18—C13—C14112.2 (2)C29—C30—H30D109.5
C12—C13—C14106.6 (2)H30B—C30—H30D109.5
C18—C13—C17110.5 (2)H30C—C30—H30D109.5
C12—C13—C17116.1 (2)O32—C31—C29114.5 (3)
C14—C13—C17100.8 (2)O32—C31—H31C108.6
C8—C14—C13114.5 (2)C29—C31—H31C108.6
C8—C14—C15119.5 (3)O32—C31—H31D108.6
C13—C14—C15103.3 (2)C29—C31—H31D108.6
C8—C14—H14C106.2H31C—C31—H31D107.6
C13—C14—H14C106.2C31—O32—H32114 (3)
C15—C14—H14C106.2C16—O33—H33111 (3)
C16—C15—C14103.3 (3)C3—O34—H34108 (4)
C10—C1—C2—C357.4 (3)C18—C13—C14—C15−71.8 (3)
C1—C2—C3—O3464.8 (3)C12—C13—C14—C15167.4 (3)
C1—C2—C3—C4−54.7 (4)C17—C13—C14—C1545.8 (3)
O34—C3—C4—C5−68.1 (4)C8—C14—C15—C16−169.8 (2)
C2—C3—C4—C554.2 (4)C13—C14—C15—C16−41.3 (3)
C3—C4—C5—C6−179.6 (3)C14—C15—C16—O33148.1 (2)
C3—C4—C5—C10−54.1 (4)C14—C15—C16—C1720.0 (3)
C4—C5—C6—C772.2 (4)C18—C13—C17—C20−42.3 (3)
C10—C5—C6—C7−54.2 (4)C12—C13—C17—C2084.3 (3)
C5—C6—C7—C855.6 (4)C14—C13—C17—C20−161.1 (2)
C6—C7—C8—C14−177.6 (3)C18—C13—C17—C1686.1 (3)
C6—C7—C8—C9−55.7 (4)C12—C13—C17—C16−147.3 (2)
C14—C8—C9—C11−50.7 (3)C14—C13—C17—C16−32.7 (2)
C7—C8—C9—C11−174.7 (3)O33—C16—C17—C2012.9 (3)
C14—C8—C9—C10−179.4 (2)C15—C16—C17—C20139.6 (3)
C7—C8—C9—C1056.6 (3)O33—C16—C17—C13−118.7 (2)
C2—C1—C10—C19−170.8 (3)C15—C16—C17—C138.0 (3)
C2—C1—C10—C5−53.8 (3)C13—C17—C20—C22−179.3 (2)
C2—C1—C10—C967.2 (3)C16—C17—C20—C2256.4 (3)
C4—C5—C10—C19166.0 (3)C13—C17—C20—C21−57.6 (3)
C6—C5—C10—C19−68.8 (4)C16—C17—C20—C21178.2 (3)
C4—C5—C10—C151.2 (3)C17—C20—C22—C26−134.1 (3)
C6—C5—C10—C1176.4 (3)C21—C20—C22—C26100.9 (4)
C4—C5—C10—C9−71.8 (3)C17—C20—C22—O2348.8 (3)
C6—C5—C10—C953.5 (4)C21—C20—C22—O23−76.2 (3)
C11—C9—C10—C19−62.0 (3)C26—C22—O23—N24−0.6 (3)
C8—C9—C10—C1965.5 (3)C20—C22—O23—N24177.2 (2)
C11—C9—C10—C157.0 (3)C22—O23—N24—C250.9 (3)
C8—C9—C10—C1−175.5 (2)O23—N24—C25—C26−0.8 (3)
C11—C9—C10—C5176.8 (2)O23—N24—C25—C27177.5 (3)
C8—C9—C10—C5−55.7 (3)O23—C22—C26—C250.1 (3)
C8—C9—C11—C1249.7 (3)C20—C22—C26—C25−177.1 (3)
C10—C9—C11—C12177.6 (2)O23—C22—C26—C28−178.8 (2)
C9—C11—C12—C13−53.1 (3)C20—C22—C26—C284.0 (5)
C11—C12—C13—C18−66.6 (3)N24—C25—C26—C220.5 (4)
C11—C12—C13—C1455.4 (3)C27—C25—C26—C22−177.7 (3)
C11—C12—C13—C17166.7 (2)N24—C25—C26—C28179.3 (3)
C7—C8—C14—C13−178.4 (3)C27—C25—C26—C281.2 (5)
C9—C8—C14—C1359.3 (3)C22—C26—C28—C29−81.4 (4)
C7—C8—C14—C15−55.2 (4)C25—C26—C28—C29100.0 (3)
C9—C8—C14—C15−177.6 (3)C26—C28—C29—C31170.2 (2)
C18—C13—C14—C859.7 (3)C26—C28—C29—C30−67.2 (4)
C12—C13—C14—C8−61.1 (3)C30—C29—C31—O3255.9 (4)
C17—C13—C14—C8177.3 (2)C28—C29—C31—O32179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O32—H32···O33i0.82 (5)1.93 (5)2.746 (3)170 (5)
O33—H33···N24ii0.85 (4)2.03 (4)2.828 (3)157 (4)
O34—H34···O32iii0.90 (6)1.89 (6)2.775 (4)166 (5)
O33—H33···O23ii0.85 (4)2.69 (4)3.536 (3)171 (4)
C18—H18C···O23ii0.962.463.362 (4)157
C28—H28C···O34iv0.972.603.471 (4)150

Symmetry codes: (i) x, y, z−1; (ii) x+1, y, z; (iii) −x+1, y+1/2, −z; (iv) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2015).

References

  • Banday, A. H., Singh, S., Alam, M. S., Reddy, D. M., Gupta, B. D. & Kumar, H. M. S. (2008). Steroids, 73, 370–374. [PubMed]
  • Beam, C. F., Schady, D. A., Rose, K. L., Kelley, W. Jr, Rakkhit, R., Hornsby, C. D. & Studer-Martinez, S. L. (2000). Synth. Commun 30, 3391–3404.
  • Gupta, R., Pathak, D. & Jindal, D. P. (1999). Eur. J. Med. Chem 34, 659–662. [PubMed]
  • Litvinovskaya, R. P., Drach, S. V. & Khripach, V. A. (1998). Russ. J. Org. Chem 34, 647–654.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Meza-Reyes, S., Sandoval-Ramírez, J., Montiel-Smith, S., Hernández-Linares, G., Vinãs-Bravo, O., Martínez-Pascual, R., Fernández-Herrera, M. A., Vega-Báez, J. L., Merino-Montiel, P., Santillán, R. L., et al. (2005). Arkivoc, vi, 307–320.
  • Pathak, D. & Jindal, D. P. (1998). Asian J. Chem 10, 813–817.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography