PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3046.
Published online 2009 November 11. doi:  10.1107/S1600536809046200
PMCID: PMC2972098

(4Z)-4-[(2E)-1-Hydr­oxy-3-(4-methoxy­phen­yl)prop-2-en­ylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Abstract

The title compound, C20H18N2O4, is a chalcone derivative of pyrazole. The pyrazole ring is inclined at a dihedral angle of 19.29 (12)° to the methoxy­phenyl ring mean plane, and by 1.19 (13)° to the phenyl ring. The mol­ecular structure is stabilized by an intra­molecular O—H(...)O hydrogen bond, making an almost planar (r.m.s. deviation = 0.0243 Å) six membered ring.

Related literature

For the anti­microbial activity of chalcones, see: Mityurina1 et al. (1981 [triangle]). For the syntheses of chalcones, see: Konieczny et al. (2007 [triangle]). For a heterocyclic chalcone, see: Arshad et al. (2008 [triangle]). For details concerning graphset analysis, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3046-scheme1.jpg

Experimental

Crystal data

  • C20H18N2O3
  • M r = 334.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3046-efi1.jpg
  • a = 5.0803 (2) Å
  • b = 22.7645 (9) Å
  • c = 14.5880 (6) Å
  • β = 97.626 (2)°
  • V = 1672.19 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.33 × 0.24 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.971, T max = 0.984
  • 9137 measured reflections
  • 2056 independent reflections
  • 2628 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.094
  • S = 1.05
  • 2056 reflections
  • 229 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.10 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046200/su2151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046200/su2151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KIM acknowledges the Institute of Chemistry, University of the Punjab, for providing research facilities, and the Education Department, Government of the Punjab, for their co-operation.

supplementary crystallographic information

Comment

Pyranopyrazole derivatives have been reported as being antimicrobial agents (Mityurina1 et al., 1981). The title compound is a heterocyclic chalcone (Arshad et al., 2008), and was synthesized as we are interested in the synthesis of pyranopyrazole derivatives.

The molecular structure of the title compound is illustrated in Fig. 1, and the geometrical parameters are available in the archived CIF. The title molecule, besides the methoxy phenyl ring A (C13-C18) attached to the pyrazole ring, is almost planar. The dihedral angle between the pyrazole ring B (N1/N2/C10-C12) and phenyl ring A is 19.29 (12) °. Phenyl ring C (C1-C6) lies in the plane of the pyrazole ring B, with a dihedral angle of 1.19 (13)°. There is an intramolecular O-H···O hydrogen bond stabilizing the molecule (Fig. 1 and Table 1). It forms a six membered ring motif which can be described as S(6) (Bernstein, et al., 1995).

Experimental

The title compound was prepared according to the literature method (Konieczny et al., 2007). 1 mmol (0.216 g) of 3-methyl-1-phenyl-acetyl-5-hydroxy pyrazole and 1.5 mmol (0.204 g) of 4-methoxybenzaldehyde was added to the mixture of 2 ml of glacial acetic acid and 0.2 ml of concentrated sulfuric acid and heated at 353-358 K for 9 h with stirring. The progress of the reaction was followed by TLC. On completion, the mixture was added to ice cold water. The precipitate obtained was filtered off, washed with methanol and purified by column chromatography using n-hexane:ethyl acetate(3:2). Red needle-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution in chloroform at r.t.

Refinement

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 672 Friedel pairs were merged and Δf " set to zero. The H-atoms were included in calculated positions and treated as riding: C—H = 0.93 Å for aromatic, C–H = 0.96 Å for CH3 and O—H = 0.82 Å, with Uiso(H) = k × Ueq(parent C- or O-atom), where k = 1.2 for aromatic H-atoms and 1.5Ueq(parent O-atom, and methyl C-atoms).

Figures

Fig. 1.
The molecular structure of the title compound, with thermal ellipsoids drawn at the 50% probability level. The intramolecular O-H···O hydrogen bond is shown as a dashed line.

Crystal data

C20H18N2O3F(000) = 704
Mr = 334.36Dx = 1.328 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3228 reflections
a = 5.0803 (2) Åθ = 2.3–25.8°
b = 22.7645 (9) ŵ = 0.09 mm1
c = 14.5880 (6) ÅT = 296 K
β = 97.626 (2)°Needle, red
V = 1672.19 (12) Å30.33 × 0.24 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2056 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −6→6
Tmin = 0.971, Tmax = 0.984k = −30→30
9137 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0492P)2 + 0.0958P] where P = (Fo2 + 2Fc2)/3
2056 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.10 e Å3
2 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.0176 (4)0.44681 (8)0.51341 (14)0.0664 (7)
O20.3841 (4)0.46097 (8)0.63360 (16)0.0711 (7)
O31.6238 (3)0.37711 (9)1.04514 (13)0.0698 (7)
N1−0.1696 (3)0.34974 (9)0.51051 (14)0.0509 (7)
N2−0.0989 (4)0.29740 (9)0.55796 (15)0.0553 (7)
C11.0015 (4)0.41049 (11)0.83769 (17)0.0485 (7)
C21.0508 (5)0.35476 (12)0.8761 (2)0.0582 (9)
C31.2597 (5)0.34518 (11)0.9444 (2)0.0596 (9)
C41.4271 (4)0.39123 (12)0.97629 (17)0.0525 (8)
C51.3838 (4)0.44665 (10)0.93893 (17)0.0493 (8)
C61.1739 (4)0.45543 (11)0.87062 (17)0.0503 (8)
C70.7813 (4)0.42297 (12)0.76621 (17)0.0509 (8)
C80.5954 (4)0.38652 (12)0.72645 (17)0.0520 (8)
C90.3848 (4)0.40523 (12)0.65663 (17)0.0520 (8)
C100.1866 (4)0.36961 (11)0.61184 (16)0.0476 (7)
C110.1116 (4)0.30908 (11)0.61679 (17)0.0499 (8)
C12−0.0042 (4)0.39408 (11)0.54131 (16)0.0508 (8)
C13−0.3813 (4)0.34899 (10)0.43652 (17)0.0495 (8)
C14−0.5624 (5)0.30347 (11)0.43192 (19)0.0546 (8)
C15−0.7691 (5)0.30167 (13)0.3600 (2)0.0689 (10)
C16−0.7933 (6)0.34472 (14)0.2929 (2)0.0789 (11)
C17−0.6134 (6)0.38955 (15)0.2983 (2)0.0745 (11)
C18−0.4058 (5)0.39282 (13)0.3700 (2)0.0646 (10)
C191.8035 (5)0.42227 (14)1.0791 (2)0.0716 (10)
C200.2392 (5)0.26103 (12)0.6752 (2)0.0690 (10)
H20.940400.323600.855100.0700*
H2O0.253800.467900.595600.1070*
H31.289400.307800.969300.0720*
H51.495300.477600.959700.0590*
H61.146000.492800.845500.0600*
H70.768500.461600.745400.0610*
H80.601800.347300.744500.0620*
H14−0.545500.274200.476900.0650*
H15−0.892400.271300.356900.0830*
H16−0.931300.343200.244200.0950*
H17−0.630500.418500.252900.0890*
H18−0.285500.423800.373500.0770*
H19A1.879800.439501.028600.1080*
H19B1.942100.406001.122900.1080*
H19C1.710300.451901.108800.1080*
H20A0.141800.225200.661500.1040*
H20B0.239900.270800.739200.1040*
H20C0.418500.255900.662600.1040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0690 (11)0.0494 (10)0.0744 (13)−0.0022 (9)−0.0138 (9)0.0081 (9)
O20.0694 (11)0.0573 (11)0.0793 (14)−0.0111 (9)−0.0170 (10)0.0090 (10)
O30.0580 (10)0.0666 (12)0.0776 (13)−0.0102 (9)−0.0174 (9)0.0148 (10)
N10.0482 (10)0.0453 (12)0.0552 (13)0.0029 (8)−0.0083 (9)0.0015 (9)
N20.0576 (11)0.0460 (11)0.0581 (13)0.0010 (9)−0.0075 (10)0.0045 (10)
C10.0451 (11)0.0504 (13)0.0490 (14)−0.0043 (10)0.0021 (10)−0.0069 (11)
C20.0532 (13)0.0502 (14)0.0680 (17)−0.0098 (11)−0.0042 (12)−0.0042 (13)
C30.0554 (13)0.0447 (13)0.0749 (18)−0.0041 (11)−0.0053 (13)0.0066 (13)
C40.0452 (12)0.0557 (15)0.0550 (15)−0.0021 (11)0.0012 (11)0.0037 (12)
C50.0464 (12)0.0465 (13)0.0527 (14)−0.0076 (10)−0.0014 (10)−0.0036 (11)
C60.0510 (11)0.0453 (13)0.0529 (15)−0.0055 (10)0.0005 (11)0.0022 (11)
C70.0465 (13)0.0520 (14)0.0521 (15)−0.0015 (10)−0.0010 (10)0.0000 (12)
C80.0477 (12)0.0537 (15)0.0529 (15)−0.0022 (10)0.0007 (11)−0.0045 (11)
C90.0479 (12)0.0563 (15)0.0510 (15)−0.0013 (10)0.0038 (11)−0.0039 (11)
C100.0428 (11)0.0498 (13)0.0483 (14)0.0020 (10)−0.0012 (10)−0.0018 (11)
C110.0490 (12)0.0469 (13)0.0511 (14)0.0014 (10)−0.0038 (10)−0.0008 (11)
C120.0505 (12)0.0450 (14)0.0550 (16)0.0021 (10)0.0003 (11)0.0002 (11)
C130.0448 (12)0.0528 (14)0.0484 (14)0.0112 (10)−0.0027 (10)−0.0070 (11)
C140.0518 (13)0.0520 (14)0.0560 (15)0.0073 (11)−0.0073 (11)−0.0062 (12)
C150.0585 (14)0.0662 (17)0.075 (2)0.0023 (12)−0.0167 (13)−0.0126 (15)
C160.0740 (18)0.077 (2)0.074 (2)0.0172 (16)−0.0334 (16)−0.0075 (17)
C170.0805 (18)0.072 (2)0.0643 (19)0.0138 (16)−0.0156 (15)0.0063 (15)
C180.0625 (16)0.0652 (18)0.0615 (17)0.0041 (13)−0.0082 (13)0.0047 (14)
C190.0574 (14)0.081 (2)0.0697 (18)−0.0097 (14)−0.0168 (13)0.0025 (16)
C200.0720 (17)0.0543 (16)0.0721 (18)−0.0016 (13)−0.0225 (14)0.0081 (14)

Geometric parameters (Å, °)

O1—C121.266 (3)C13—C141.381 (3)
O2—C91.313 (3)C14—C151.383 (4)
O3—C41.358 (3)C15—C161.379 (4)
O3—C191.420 (3)C16—C171.365 (5)
O2—H2O0.8200C17—C181.385 (4)
N1—N21.401 (3)C2—H20.9300
N1—C131.419 (3)C3—H30.9300
N1—C121.352 (3)C5—H50.9300
N2—C111.307 (3)C6—H60.9300
C1—C21.396 (4)C7—H70.9300
C1—C71.453 (3)C8—H80.9300
C1—C61.390 (3)C14—H140.9300
C2—C31.373 (4)C15—H150.9300
C3—C41.391 (4)C16—H160.9300
C4—C51.380 (4)C17—H170.9300
C5—C61.374 (3)C18—H180.9300
C7—C81.331 (3)C19—H19A0.9600
C8—C91.440 (3)C19—H19B0.9600
C9—C101.387 (3)C19—H19C0.9600
C10—C111.434 (3)C20—H20A0.9600
C10—C121.430 (3)C20—H20B0.9600
C11—C201.482 (4)C20—H20C0.9600
C13—C181.386 (4)
C4—O3—C19117.6 (2)C16—C17—C18121.4 (3)
C9—O2—H2O109.00C13—C18—C17118.6 (3)
N2—N1—C12111.33 (18)C1—C2—H2119.00
N2—N1—C13118.97 (19)C3—C2—H2119.00
C12—N1—C13129.6 (2)C2—C3—H3120.00
N1—N2—C11106.58 (19)C4—C3—H3120.00
C2—C1—C6117.3 (2)C4—C5—H5120.00
C6—C1—C7119.6 (2)C6—C5—H5120.00
C2—C1—C7123.1 (2)C1—C6—H6119.00
C1—C2—C3121.1 (2)C5—C6—H6119.00
C2—C3—C4120.2 (2)C1—C7—H7116.00
O3—C4—C3115.2 (2)C8—C7—H7116.00
O3—C4—C5124.9 (2)C7—C8—H8119.00
C3—C4—C5119.9 (2)C9—C8—H8119.00
C4—C5—C6119.1 (2)C13—C14—H14120.00
C1—C6—C5122.4 (2)C15—C14—H14120.00
C1—C7—C8128.7 (2)C14—C15—H15120.00
C7—C8—C9122.8 (2)C16—C15—H15120.00
O2—C9—C8116.3 (2)C15—C16—H16120.00
O2—C9—C10117.9 (2)C17—C16—H16120.00
C8—C9—C10125.8 (2)C16—C17—H17119.00
C9—C10—C11136.0 (2)C18—C17—H17119.00
C9—C10—C12119.5 (2)C13—C18—H18121.00
C11—C10—C12104.56 (19)C17—C18—H18121.00
N2—C11—C20119.0 (2)O3—C19—H19A110.00
C10—C11—C20129.7 (2)O3—C19—H19B109.00
N2—C11—C10111.2 (2)O3—C19—H19C109.00
O1—C12—N1126.6 (2)H19A—C19—H19B109.00
N1—C12—C10106.3 (2)H19A—C19—H19C109.00
O1—C12—C10127.1 (2)H19B—C19—H19C109.00
N1—C13—C14118.6 (2)C11—C20—H20A109.00
C14—C13—C18120.6 (2)C11—C20—H20B109.00
N1—C13—C18120.8 (2)C11—C20—H20C109.00
C13—C14—C15119.5 (2)H20A—C20—H20B110.00
C14—C15—C16120.3 (3)H20A—C20—H20C109.00
C15—C16—C17119.6 (3)H20B—C20—H20C109.00
C19—O3—C4—C3178.9 (2)C4—C5—C6—C10.3 (4)
C19—O3—C4—C5−2.2 (3)C1—C7—C8—C9179.2 (2)
C12—N1—N2—C11−1.0 (3)C7—C8—C9—C10179.4 (2)
C13—N1—N2—C11175.09 (19)C7—C8—C9—O2−0.1 (4)
N2—N1—C12—C100.6 (2)O2—C9—C10—C11−178.3 (3)
C13—N1—C12—C10−174.9 (2)C8—C9—C10—C12−177.7 (2)
N2—N1—C13—C1420.3 (3)O2—C9—C10—C121.8 (3)
C12—N1—C13—C14−164.5 (2)C8—C9—C10—C112.3 (4)
N2—N1—C13—C18−159.5 (2)C12—C10—C11—C20178.0 (2)
C12—N1—C13—C1815.8 (4)C9—C10—C12—O1−0.5 (4)
N2—N1—C12—O1−178.9 (2)C9—C10—C12—N1179.9 (2)
C13—N1—C12—O15.5 (4)C11—C10—C12—O1179.5 (2)
N1—N2—C11—C20−177.8 (2)C11—C10—C12—N1−0.1 (2)
N1—N2—C11—C100.9 (3)C9—C10—C11—N2179.5 (3)
C7—C1—C2—C3−179.2 (2)C9—C10—C11—C20−2.0 (5)
C2—C1—C6—C5−0.8 (4)C12—C10—C11—N2−0.5 (3)
C6—C1—C2—C30.7 (4)N1—C13—C14—C15−179.5 (2)
C6—C1—C7—C8−179.5 (2)C18—C13—C14—C150.2 (4)
C2—C1—C7—C80.4 (4)N1—C13—C18—C17178.9 (2)
C7—C1—C6—C5179.2 (2)C14—C13—C18—C17−0.8 (4)
C1—C2—C3—C4−0.2 (4)C13—C14—C15—C160.5 (4)
C2—C3—C4—C5−0.3 (4)C14—C15—C16—C17−0.7 (4)
C2—C3—C4—O3178.7 (2)C15—C16—C17—C180.0 (5)
O3—C4—C5—C6−178.7 (2)C16—C17—C18—C130.7 (4)
C3—C4—C5—C60.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.821.772.529 (3)153
C7—H7···O20.932.372.743 (3)104
C14—H14···N20.932.472.792 (3)100
C18—H18···O10.932.362.947 (3)121

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2151).

References

  • Arshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Konieczny, T. M., Konieczny, W., Sabisz, M., Skladanowski, A., Wakiec, R., Augustynowicz-Kopec, E. & Zwolska, Z. (2007). Eur. J. Med. Chem 65, 729–733. [PubMed]
  • Mityurina1, K. V., Kulikova1, L. K., Krasheninnikova1, M. K., & Kharchenko1, V. G. (1981). Pharm. Chem. J. 15, 861–863.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography