PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3216.
Published online 2009 November 25. doi:  10.1107/S160053680904971X
PMCID: PMC2972097

4-(4-Methoxy­phen­yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetra­hydrochromene-2,5-dione

Abstract

The title compound, C18H20O4, was synthesized by the reaction of 4-methoxy­benzaldehyde, 2,2-dimethyl-1,3-dioxane-4,6-dione and 5,5-dimethyl­cyclo­hexane-1,3-dione with triethyl­benzyl­ammonium chloride in water as a green solvent. In the mol­ecule of the title compound, the six-membered pyran­one ring of the hexa­hydro­coumarin system has a screw-boat conformation while that of the dimethyl­cyclo­hexenone system has a distorted envelope conformation. The CMe2 portion of this ring is disordered over two positions with refined occupancies of 0.721 (7) and 0.279 (7).

Related literature

For background to the applications of coumarin derivatives see: Wang et al. (1999 [triangle]); Yang (2001 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3216-scheme1.jpg

Experimental

Crystal data

  • C18H20O4
  • M r = 300.34
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3216-efi1.jpg
  • a = 5.9793 (6) Å
  • b = 11.7371 (12) Å
  • c = 22.565 (2) Å
  • V = 1583.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.37 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.968, T max = 0.985
  • 7934 measured reflections
  • 1643 independent reflections
  • 1288 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.128
  • S = 1.05
  • 1643 reflections
  • 233 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904971X/sj2689sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904971X/sj2689Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The research was supported by the Open Foundation of Key Disciplines within the Zhejiang Provincial Key Disciplines.

supplementary crystallographic information

Comment

Coumarin is an important chemical with unique characteristics. It is widely used in hand soaps, detergents, lotions and laser dyes (Wang et al., 1999). Coumarin and some of its derivatives have been tested in pharmacology for treatment of HIV (Yang, 2001). To obtain a coumarin in a more environmentally friendly way, water was used as a green solvent in the synthesis of the title compound.

In the molecule of the title compound, the two six membered rings of the hexahydrocoumarin system are not planar, the cyclohexene ring A (O1/C1–C4/C9) adopts the screw-boat conformation with puckering parameters (Cremer & Pople, 1975) Q= 0.468 (5) Å, θ= 64.4 (5)° and [var phi] = 143.5 (6)°; for the ring B (C4–C9), disorder was modelled for the C6, C10, C11 atoms resolved over two positions with occupancies of 0.721 (7) and 0.279 (7). Ring C (C12–C17) is, of course, planar. The dihedral angle between the least-squares plane of ring A(O1/C1–C4/C9) and that of ring C (C12–C17) is 87.59 (12)°.

Experimental

A mixture of 4-methoxybenzaldehyde (100 mmol), 5,5-dimethyl-1,3-cyclohexanedione (100 mmol), 2,2-dimethyl-1,3-dioxane-4,6-dione (100 mmol), triethylbenzylammonium chloride(TEBA) (15 mmol) and 400 mL of water was stirred at 65°C for 4 h (Fig.2). The reaction mixture was cooled to room temperature, the precipitated product was filtered and recrystallized from ethanol to give the title compound. Crystals suitable for X-ray structure analysis were obtained by slow evaporation from methanol solution at room temperature.

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å, They were treated as riding atoms, with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for other H atoms. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray data and Friedel pairs were merged.

Figures

Fig. 1.
Structure of 1 showing 30% probability displacement ellipsoids and the atom numbering scheme. Bonds to atoms of the minor disorder component are shown as dashed lines.
Fig. 2.
The preparation of the title compound.

Crystal data

C18H20O4F(000) = 640
Mr = 300.34Dx = 1.260 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2932 reflections
a = 5.9793 (6) Åθ = 2.5–25.3°
b = 11.7371 (12) ŵ = 0.09 mm1
c = 22.565 (2) ÅT = 298 K
V = 1583.6 (3) Å3Prism, colorless
Z = 40.37 × 0.21 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer1643 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
graphiteRint = 0.075
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −7→6
Tmin = 0.968, Tmax = 0.985k = −13→10
7934 measured reflectionsl = −25→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.128w = 1/[σ2(Fo2) + (0.0461P)2 + 0.553P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1643 reflectionsΔρmax = 0.28 e Å3
233 parametersΔρmin = −0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.2602 (5)0.1771 (2)0.05280 (10)0.0674 (8)
O20.1786 (9)0.0959 (3)−0.03152 (13)0.1292 (18)
O30.8756 (6)0.0717 (3)0.17213 (14)0.0865 (10)
O40.2049 (6)−0.4043 (2)0.11499 (12)0.0742 (9)
C10.3211 (11)0.1093 (3)0.00511 (16)0.0782 (15)
C20.5491 (10)0.0631 (4)0.00509 (16)0.0766 (15)
H2A0.65230.1218−0.00790.092*
H2B0.55770.0005−0.02290.092*
C30.6193 (8)0.0208 (3)0.06653 (15)0.0596 (10)
H30.78090.00690.06570.072*
C40.5755 (7)0.1163 (3)0.10917 (15)0.0498 (9)
C50.7227 (8)0.1351 (4)0.1596 (2)0.0757 (13)
C60.7088 (10)0.2528 (4)0.1872 (2)0.0597 (17)0.721 (7)
H6A0.78310.30720.16160.072*0.721 (7)
H6B0.78660.25230.22490.072*0.721 (7)
C6'0.584 (3)0.1803 (12)0.2150 (6)0.064 (5)0.279 (7)
H6'10.47490.12360.22710.077*0.279 (7)
H6'20.68360.19450.24810.077*0.279 (7)
C70.4652 (6)0.2907 (3)0.19705 (14)0.0516 (9)
C80.3415 (7)0.2858 (3)0.13786 (14)0.0591 (10)
H8A0.18210.28140.14550.071*
H8B0.36950.35590.11630.071*
C90.4070 (7)0.1883 (3)0.10012 (13)0.0502 (9)
C100.3528 (11)0.2039 (5)0.2381 (2)0.0695 (19)0.721 (7)
H10A0.43070.20170.27530.104*0.721 (7)
H10B0.35710.12990.22010.104*0.721 (7)
H10C0.20010.22580.24470.104*0.721 (7)
C110.4615 (15)0.4084 (6)0.2232 (3)0.080 (2)0.721 (7)
H11A0.54410.40880.25970.119*0.721 (7)
H11B0.30970.43070.23080.119*0.721 (7)
H11C0.52860.46110.19590.119*0.721 (7)
C10'0.651 (3)0.3774 (11)0.1822 (7)0.062 (4)0.279 (7)
H10D0.58390.44650.16780.094*0.279 (7)
H10E0.74690.34630.15220.094*0.279 (7)
H10F0.73610.39340.21720.094*0.279 (7)
C11'0.326 (4)0.3516 (15)0.2465 (7)0.073 (5)0.279 (7)
H11D0.42370.37330.27830.109*0.279 (7)
H11E0.21370.30050.26120.109*0.279 (7)
H11F0.25600.41820.23030.109*0.279 (7)
C120.5050 (7)−0.0900 (3)0.08200 (13)0.0496 (9)
C130.3053 (7)−0.0949 (3)0.11313 (14)0.0522 (9)
H130.2407−0.02750.12630.063*
C140.1992 (7)−0.1971 (3)0.12516 (14)0.0545 (9)
H140.0657−0.19800.14630.065*
C150.2929 (7)−0.2976 (3)0.10557 (15)0.0533 (9)
C160.4910 (7)−0.2948 (3)0.07371 (15)0.0595 (10)
H160.5539−0.36230.06010.071*
C170.5949 (7)−0.1928 (3)0.06213 (14)0.0570 (9)
H170.7277−0.19220.04060.068*
C180.0106 (9)−0.4122 (4)0.1497 (2)0.0809 (13)
H18A0.0434−0.38820.18950.121*
H18B−0.0408−0.48970.15020.121*
H18C−0.1035−0.36410.13330.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.094 (2)0.0597 (15)0.0483 (13)0.0106 (16)−0.0219 (15)0.0002 (11)
O20.216 (5)0.103 (2)0.0688 (18)0.026 (3)−0.067 (3)−0.0170 (18)
O30.071 (2)0.0778 (19)0.110 (2)0.0202 (19)−0.0248 (19)−0.0096 (18)
O40.090 (2)0.0495 (15)0.0830 (18)−0.0081 (17)0.0002 (19)−0.0120 (13)
C10.139 (5)0.058 (2)0.0377 (18)0.008 (3)−0.018 (3)0.0036 (17)
C20.124 (4)0.061 (2)0.045 (2)0.003 (3)0.016 (3)0.0031 (18)
C30.073 (3)0.053 (2)0.0527 (19)0.003 (2)0.010 (2)−0.0003 (16)
C40.056 (2)0.0419 (17)0.0511 (18)−0.0029 (18)0.0013 (18)0.0013 (14)
C50.067 (3)0.069 (3)0.092 (3)0.020 (3)−0.025 (3)−0.019 (2)
C60.061 (4)0.057 (3)0.061 (3)−0.004 (3)−0.006 (3)−0.005 (2)
C6'0.077 (11)0.058 (8)0.057 (8)−0.006 (9)−0.015 (8)0.006 (6)
C70.058 (2)0.052 (2)0.0456 (18)−0.002 (2)−0.0049 (17)−0.0024 (15)
C80.072 (3)0.0501 (19)0.0554 (19)0.009 (2)−0.010 (2)−0.0061 (16)
C90.065 (2)0.0471 (17)0.0381 (16)−0.002 (2)−0.0074 (18)0.0046 (14)
C100.083 (5)0.082 (4)0.044 (3)0.000 (4)0.001 (3)0.011 (3)
C110.097 (6)0.071 (4)0.071 (4)0.009 (4)−0.022 (4)−0.019 (3)
C10'0.063 (9)0.055 (8)0.069 (8)−0.007 (8)0.002 (8)−0.008 (7)
C11'0.084 (13)0.074 (10)0.061 (9)0.006 (10)−0.007 (9)−0.016 (8)
C120.062 (2)0.0481 (19)0.0382 (16)0.0058 (19)−0.0006 (17)−0.0007 (14)
C130.063 (2)0.0440 (18)0.0500 (18)0.0108 (19)0.0036 (19)−0.0043 (15)
C140.059 (2)0.053 (2)0.0510 (18)0.005 (2)0.0000 (19)−0.0069 (16)
C150.064 (2)0.0478 (19)0.0477 (17)0.000 (2)−0.0131 (19)−0.0059 (15)
C160.072 (3)0.050 (2)0.057 (2)0.013 (2)−0.002 (2)−0.0141 (17)
C170.064 (2)0.057 (2)0.0498 (19)0.007 (2)0.0061 (19)−0.0057 (16)
C180.083 (3)0.061 (2)0.099 (3)−0.014 (3)−0.002 (3)0.003 (2)

Geometric parameters (Å, °)

O1—C11.387 (5)C8—C91.479 (5)
O1—C91.388 (4)C8—H8A0.9700
O2—C11.197 (6)C8—H8B0.9700
O3—C51.213 (5)C10—H10A0.9600
O4—C151.376 (4)C10—H10B0.9600
O4—C181.404 (6)C10—H10C0.9600
C1—C21.467 (7)C11—H11A0.9600
C2—C31.531 (5)C11—H11B0.9600
C2—H2A0.9700C11—H11C0.9600
C2—H2B0.9700C10'—H10D0.9600
C3—C41.500 (5)C10'—H10E0.9600
C3—C121.510 (5)C10'—H10F0.9600
C3—H30.9800C11'—H11D0.9600
C4—C91.331 (5)C11'—H11E0.9600
C4—C51.455 (5)C11'—H11F0.9600
C5—C61.517 (6)C12—C131.386 (5)
C5—C6'1.592 (16)C12—C171.395 (5)
C6—C71.539 (7)C13—C141.383 (5)
C6—H6A0.9700C13—H130.9300
C6—H6B0.9700C14—C151.379 (5)
C6'—C71.532 (15)C14—H140.9300
C6'—H6'10.9700C15—C161.386 (6)
C6'—H6'20.9700C16—C171.374 (5)
C7—C111.503 (7)C16—H160.9300
C7—C81.528 (5)C17—H170.9300
C7—C101.533 (6)C18—H18A0.9600
C7—C10'1.542 (14)C18—H18B0.9600
C7—C11'1.564 (16)C18—H18C0.9600
C1—O1—C9119.0 (3)C6'—C7—C11'116.4 (9)
C15—O4—C18117.6 (3)C10—C7—C11'68.8 (8)
O2—C1—O1115.1 (5)C6—C7—C11'137.5 (8)
O2—C1—C2127.8 (4)C10'—C7—C11'103.6 (10)
O1—C1—C2117.1 (4)C9—C8—C7113.8 (3)
C1—C2—C3112.0 (4)C9—C8—H8A108.8
C1—C2—H2A109.2C7—C8—H8A108.8
C3—C2—H2A109.2C9—C8—H8B108.8
C1—C2—H2B109.2C7—C8—H8B108.8
C3—C2—H2B109.2H8A—C8—H8B107.7
H2A—C2—H2B107.9C4—C9—O1122.4 (3)
C4—C3—C12114.6 (3)C4—C9—C8127.1 (3)
C4—C3—C2106.9 (3)O1—C9—C8110.4 (3)
C12—C3—C2111.4 (3)C7—C10—H10A109.5
C4—C3—H3107.9C7—C10—H10B109.5
C12—C3—H3107.9C7—C10—H10C109.5
C2—C3—H3107.9C7—C11—H11A109.5
C9—C4—C5118.8 (3)C7—C11—H11B109.5
C9—C4—C3120.5 (3)C7—C11—H11C109.5
C5—C4—C3120.6 (3)C7—C10'—H10D109.5
O3—C5—C4123.0 (4)C7—C10'—H10E109.5
O3—C5—C6120.3 (4)H10D—C10'—H10E109.5
C4—C5—C6115.2 (4)C7—C10'—H10F109.5
O3—C5—C6'114.5 (6)H10D—C10'—H10F109.5
C4—C5—C6'110.5 (6)H10E—C10'—H10F109.5
C6—C5—C6'49.1 (6)C7—C11'—H11D109.5
C5—C6—C7112.0 (4)C7—C11'—H11E109.5
C5—C6—H6A109.2H11D—C11'—H11E109.5
C7—C6—H6A109.2C7—C11'—H11F109.5
C5—C6—H6B109.2H11D—C11'—H11F109.5
C7—C6—H6B109.2H11E—C11'—H11F109.5
H6A—C6—H6B107.9C13—C12—C17117.3 (3)
C7—C6'—C5108.4 (8)C13—C12—C3122.9 (3)
C7—C6'—H6'1110.0C17—C12—C3119.7 (3)
C5—C6'—H6'1110.0C14—C13—C12122.0 (3)
C7—C6'—H6'2110.0C14—C13—H13119.0
C5—C6'—H6'2110.0C12—C13—H13119.0
H6'1—C6'—H6'2108.4C15—C14—C13119.5 (3)
C11—C7—C8111.8 (4)C15—C14—H14120.3
C11—C7—C6'132.9 (6)C13—C14—H14120.3
C8—C7—C6'115.1 (6)O4—C15—C14125.0 (4)
C11—C7—C10111.5 (5)O4—C15—C16115.4 (3)
C8—C7—C10106.9 (4)C14—C15—C16119.6 (4)
C6'—C7—C1058.7 (7)C17—C16—C15120.4 (3)
C11—C7—C6109.7 (5)C17—C16—H16119.8
C8—C7—C6108.8 (3)C15—C16—H16119.8
C6'—C7—C649.8 (7)C16—C17—C12121.2 (4)
C10—C7—C6108.1 (4)C16—C17—H17119.4
C11—C7—C10'59.3 (6)C12—C17—H17119.4
C8—C7—C10'100.5 (6)O4—C18—H18A109.5
C6'—C7—C10'106.5 (9)O4—C18—H18B109.5
C10—C7—C10'152.4 (7)H18A—C18—H18B109.5
C6—C7—C10'58.6 (6)O4—C18—H18C109.5
C11—C7—C11'44.9 (7)H18A—C18—H18C109.5
C8—C7—C11'112.5 (7)H18B—C18—H18C109.5
C9—O1—C1—O2173.9 (4)C5—C6—C7—C10'−147.4 (8)
C9—O1—C1—C2−6.4 (5)C5—C6—C7—C11'137.6 (12)
O2—C1—C2—C3−138.4 (5)C11—C7—C8—C9158.7 (5)
O1—C1—C2—C341.9 (5)C6'—C7—C8—C9−16.1 (8)
C1—C2—C3—C4−51.9 (5)C10—C7—C8—C9−79.0 (5)
C1—C2—C3—C1273.9 (4)C6—C7—C8—C937.5 (5)
C12—C3—C4—C9−92.1 (4)C10'—C7—C8—C997.7 (6)
C2—C3—C4—C931.8 (5)C11'—C7—C8—C9−152.6 (9)
C12—C3—C4—C590.9 (5)C5—C4—C9—O1179.4 (4)
C2—C3—C4—C5−145.2 (4)C3—C4—C9—O12.3 (5)
C9—C4—C5—O3177.6 (4)C5—C4—C9—C8−3.2 (6)
C3—C4—C5—O3−5.3 (7)C3—C4—C9—C8179.7 (4)
C9—C4—C5—C6−16.1 (6)C1—O1—C9—C4−17.4 (5)
C3—C4—C5—C6161.0 (4)C1—O1—C9—C8164.8 (3)
C9—C4—C5—C6'37.3 (7)C7—C8—C9—C4−8.8 (5)
C3—C4—C5—C6'−145.6 (6)C7—C8—C9—O1168.8 (3)
O3—C5—C6—C7−146.6 (5)C4—C3—C12—C1328.7 (5)
C4—C5—C6—C746.7 (6)C2—C3—C12—C13−92.8 (4)
C6'—C5—C6—C7−49.2 (8)C4—C3—C12—C17−154.6 (3)
O3—C5—C6'—C7157.8 (7)C2—C3—C12—C1783.9 (4)
C4—C5—C6'—C7−58.2 (10)C17—C12—C13—C141.0 (5)
C6—C5—C6'—C748.0 (7)C3—C12—C13—C14177.8 (3)
C5—C6'—C7—C11−125.9 (8)C12—C13—C14—C15−0.3 (5)
C5—C6'—C7—C847.5 (11)C18—O4—C15—C14−3.3 (5)
C5—C6'—C7—C10142.8 (11)C18—O4—C15—C16176.7 (3)
C5—C6'—C7—C6−46.5 (7)C13—C14—C15—O4179.5 (3)
C5—C6'—C7—C10'−62.9 (11)C13—C14—C15—C16−0.5 (5)
C5—C6'—C7—C11'−177.7 (10)O4—C15—C16—C17−179.4 (3)
C5—C6—C7—C11−178.8 (4)C14—C15—C16—C170.6 (5)
C5—C6—C7—C8−56.3 (5)C15—C16—C17—C120.1 (6)
C5—C6—C7—C6'51.1 (7)C13—C12—C17—C16−0.9 (5)
C5—C6—C7—C1059.4 (5)C3—C12—C17—C16−177.8 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2689).

References

  • Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X. F., Qu, Y. & Gu, F. (1999). Speciality Petrochem 1, 49–52.
  • Yang, J. S. (2001). West China J. Pharm. Sci 16, 285–288.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography