PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3103.
Published online 2009 November 18. doi:  10.1107/S1600536809047928
PMCID: PMC2972093

1-Methyl-2,4-bis­(2-methoxy­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

The crystal structure of the title compound, C23H27NO3, shows that the compound exists in a chair–chair conformation with an equatorial disposition of 2-methoxy­phenyl groups at an angle of 39.94 (3)° with respect to each other. An inter­molecular N—H(...)π inter­action is observed in the crystal packing.

Related literature

For the biological activity of 3-aza­bicyclo­nona­nes, see: Barker et al. (2005 [triangle]); Hardick et al. (1996 [triangle]); Jeyaraman & Avila (1981 [triangle]). For related structures with similar conformations, see: Parthiban et al. (2008 [triangle]); Parthiban, Ramkumar & Jeong (2009 [triangle]); Parthiban, Ramkumar, Kim et al. (2009 [triangle]). For a related structure with a chair–boat conformation, see: Smith-Verdier et al. (1983 [triangle]). For a related structure with a boat–boat conformation, see: Padegimas & Kovacic (1972 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3103-scheme1.jpg

Experimental

Crystal data

  • C23H27NO3
  • M r = 365.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3103-efi1.jpg
  • a = 7.9569 (3) Å
  • b = 20.8291 (9) Å
  • c = 11.6708 (6) Å
  • β = 96.297 (2)°
  • V = 1922.59 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.41 × 0.24 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.288, T max = 0.980
  • 14049 measured reflections
  • 4608 independent reflections
  • 3166 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.127
  • S = 1.02
  • 4608 reflections
  • 251 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047928/ez2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047928/ez2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Industrial Technology Devlopment Program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

3-Azabicyclononanes are an important class of heterocycles due to their broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Owing to the diverse possibilities in conformations, viz., chair-chair (Parthiban et al., 2008; Parthiban, Ramkumar & Jeong, 2009; Parthiban, Ramkumar, Kim et al., 2009), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bonding of the title compound.

The analysis of torsion angles, asymmetry parameters and least-squares planes calculated for the title compound shows that the piperidine ring adopts a near ideal chair conformation with deviations of the ring atoms C8 and N1 from the C1/C2/C6/C7 plane by 0.655 (3) Å and -0.708 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.0341 (15) Å and q3 =0.6123 (15) Å (Nardelli, 1983). The total puckering amplitude, QT = 0.6132 (15) Å and θ = 3.14 (14) ° (Cremer & Pople, 1975). The cyclohexane ring deviates from the ideal chair conformation by the deviation of ring atoms C4 and C8 from the C2/C3/C5/C6 plane by -0.697 (4) Å and 0.535 (3) Å, respectively. The smallest displacement asymmetry parameters are q2 = 0.1216 (17) Å and q3 = 0.5322 (17) Å (Nardelli, 1983); total puckering amplitude, QT = 0.5460 (16) Å, and θ =12.87 (18)° (Cremer & Pople, 1975). Hence, the title compound C23H27NO3, exists in a chair-chair conformation with an equatorial orientation of the ortho-methoxyphenyl groups on the heterocycle, which are orientated at an angle of 39.94 (3)° with respect to each other. The crystal structure is stabilized by an intermolecular N-H···π interaction between N1-H1A and the C16/C17/C18/C19/C20/C21 ring in a neighbouring molecule [N···centroid distance of 2.852 (3)Å; symmetry operator: 1-x,-y,1-z].

Experimental

A mixture of 2-methylcyclohexanone (0.05 mol, 5.61 g) and ortho-methoxybenzaldehyde (0.1 mol, 13.62 g) was added to a warm solution of ammonium acetate (0.075 mol, 5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed with stirring until a yellow color was obtained during the mixing of the reactants and then allowed to stir at 303–308° K until formation of the product. At the end, the crude azabicyclic ketone was separated by filtration and washed with a 1:5 ethanol-ether mixture until the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 1-methyl-2,4-bis(2-methoxyphenyl)-3- azabicyclo[3.3.1]nonan-9-one.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP diagram of the molecule, showing the atom numbering scheme, with atoms represented as 30% probability ellipsoids.

Crystal data

C23H27NO3F(000) = 784
Mr = 365.46Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4178 reflections
a = 7.9569 (3) Åθ = 2.6–28.0°
b = 20.8291 (9) ŵ = 0.08 mm1
c = 11.6708 (6) ÅT = 298 K
β = 96.297 (2)°Block, colourless
V = 1922.59 (15) Å30.41 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4608 independent reflections
Radiation source: fine-focus sealed tube3166 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −8→10
Tmin = 0.288, Tmax = 0.980k = −27→27
14049 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4061P] where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.23693 (17)0.12454 (6)0.28186 (12)0.0323 (3)
H10.16690.12690.34580.039*
C20.11755 (18)0.10977 (7)0.16904 (12)0.0363 (3)
C30.2099 (2)0.10169 (8)0.06003 (13)0.0431 (4)
H3A0.12540.0972−0.00600.052*
H3B0.27250.14080.04920.052*
C40.3315 (2)0.04531 (8)0.06032 (14)0.0473 (4)
H4A0.43470.05570.10890.057*
H4B0.36040.0385−0.01740.057*
C50.2575 (2)−0.01655 (8)0.10382 (14)0.0465 (4)
H5A0.3483−0.04730.12110.056*
H5B0.1790−0.03450.04270.056*
C60.16498 (18)−0.00768 (7)0.21184 (13)0.0372 (3)
H60.1050−0.04750.22560.045*
C70.27979 (17)0.01007 (6)0.32297 (12)0.0321 (3)
H70.20890.01400.38620.039*
C80.03777 (19)0.04528 (7)0.19078 (12)0.0383 (3)
C90.33357 (18)0.18729 (6)0.27865 (12)0.0334 (3)
C100.49093 (19)0.18943 (7)0.23764 (14)0.0407 (4)
H100.53440.15220.20820.049*
C110.5850 (2)0.24549 (8)0.23944 (15)0.0479 (4)
H110.69030.24570.21190.058*
C120.5214 (2)0.30076 (8)0.28224 (16)0.0505 (4)
H120.58390.33850.28360.061*
C130.3655 (2)0.30062 (7)0.32316 (14)0.0452 (4)
H130.32300.33830.35160.054*
C140.27187 (19)0.24449 (7)0.32211 (12)0.0370 (3)
C15−0.0179 (2)0.16144 (8)0.14796 (16)0.0530 (4)
H15A−0.09810.14900.08430.079*
H15B0.03400.20140.13050.079*
H15C−0.07480.16650.21580.079*
C160.41183 (18)−0.04090 (6)0.35486 (12)0.0325 (3)
C170.36550 (18)−0.09743 (7)0.40848 (12)0.0355 (3)
C180.4828 (2)−0.14549 (7)0.43706 (13)0.0432 (4)
H180.4506−0.18310.47170.052*
C190.6482 (2)−0.13728 (8)0.41378 (14)0.0487 (4)
H190.7271−0.16950.43300.058*
C200.6970 (2)−0.08216 (8)0.36268 (15)0.0497 (4)
H200.8087−0.07670.34810.060*
C210.57849 (19)−0.03438 (7)0.33286 (14)0.0421 (4)
H210.61180.00280.29740.050*
C220.0402 (2)0.29848 (8)0.39536 (17)0.0566 (5)
H22A0.10560.31740.46080.085*
H22B−0.07170.28940.41430.085*
H22C0.03390.32780.33160.085*
C230.1527 (3)−0.15186 (11)0.49954 (19)0.0793 (7)
H23A0.1658−0.19200.46100.119*
H23B0.0368−0.14660.51340.119*
H23C0.2235−0.15150.57170.119*
N10.35903 (15)0.07229 (5)0.30669 (11)0.0324 (3)
O1−0.11245 (14)0.03744 (6)0.19326 (12)0.0606 (4)
O20.11835 (14)0.24067 (5)0.36491 (10)0.0498 (3)
O30.19994 (13)−0.10095 (5)0.42960 (10)0.0484 (3)
H1A0.4203 (18)0.0824 (7)0.3696 (13)0.032 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0345 (7)0.0274 (7)0.0357 (7)0.0025 (5)0.0074 (6)0.0021 (6)
C20.0341 (8)0.0356 (8)0.0387 (8)0.0037 (6)0.0025 (6)0.0037 (6)
C30.0492 (9)0.0446 (9)0.0360 (8)−0.0024 (7)0.0065 (7)0.0062 (7)
C40.0524 (10)0.0531 (10)0.0386 (8)0.0012 (8)0.0149 (7)−0.0044 (7)
C50.0556 (10)0.0417 (9)0.0415 (9)0.0027 (7)0.0019 (7)−0.0094 (7)
C60.0371 (8)0.0303 (7)0.0437 (8)−0.0074 (6)0.0027 (6)−0.0005 (6)
C70.0336 (7)0.0281 (7)0.0356 (7)−0.0004 (6)0.0079 (6)0.0008 (6)
C80.0346 (8)0.0454 (9)0.0344 (7)−0.0040 (7)0.0021 (6)0.0012 (6)
C90.0375 (8)0.0278 (7)0.0352 (7)0.0011 (6)0.0047 (6)0.0033 (6)
C100.0406 (8)0.0338 (8)0.0490 (9)0.0025 (6)0.0104 (7)0.0025 (7)
C110.0397 (9)0.0431 (9)0.0625 (11)−0.0038 (7)0.0124 (8)0.0071 (8)
C120.0538 (10)0.0348 (9)0.0637 (11)−0.0107 (7)0.0096 (8)0.0045 (8)
C130.0571 (10)0.0285 (8)0.0511 (9)0.0001 (7)0.0099 (8)−0.0009 (7)
C140.0426 (8)0.0314 (7)0.0379 (8)0.0021 (6)0.0085 (6)0.0037 (6)
C150.0466 (10)0.0492 (10)0.0613 (11)0.0119 (8)−0.0018 (8)0.0049 (8)
C160.0365 (8)0.0272 (7)0.0340 (7)0.0002 (6)0.0053 (6)−0.0024 (6)
C170.0404 (8)0.0320 (7)0.0337 (7)−0.0031 (6)0.0025 (6)−0.0014 (6)
C180.0578 (10)0.0298 (7)0.0408 (8)0.0021 (7)0.0006 (7)0.0024 (6)
C190.0536 (10)0.0414 (9)0.0498 (9)0.0186 (8)−0.0003 (8)−0.0031 (7)
C200.0395 (9)0.0502 (10)0.0608 (10)0.0094 (7)0.0116 (8)−0.0031 (8)
C210.0401 (8)0.0365 (8)0.0510 (9)0.0002 (7)0.0117 (7)0.0023 (7)
C220.0599 (11)0.0430 (10)0.0702 (12)0.0106 (8)0.0220 (9)−0.0069 (8)
C230.0611 (13)0.0974 (16)0.0793 (14)−0.0177 (11)0.0073 (11)0.0504 (13)
N10.0324 (6)0.0256 (6)0.0383 (7)−0.0002 (5)−0.0004 (5)−0.0006 (5)
O10.0336 (6)0.0681 (8)0.0795 (9)−0.0079 (6)0.0039 (6)0.0119 (7)
O20.0552 (7)0.0316 (6)0.0678 (8)0.0036 (5)0.0292 (6)−0.0024 (5)
O30.0429 (6)0.0469 (7)0.0564 (7)−0.0067 (5)0.0093 (5)0.0167 (5)

Geometric parameters (Å, °)

C1—N11.4663 (17)C12—C131.377 (2)
C1—C91.5191 (19)C12—H120.9300
C1—C21.5672 (19)C13—C141.386 (2)
C1—H10.9800C13—H130.9300
C2—C81.519 (2)C14—O21.3719 (17)
C2—C151.524 (2)C15—H15A0.9600
C2—C31.547 (2)C15—H15B0.9600
C3—C41.521 (2)C15—H15C0.9600
C3—H3A0.9700C16—C211.385 (2)
C3—H3B0.9700C16—C171.4016 (19)
C4—C51.526 (2)C17—O31.3685 (17)
C4—H4A0.9700C17—C181.384 (2)
C4—H4B0.9700C18—C191.384 (2)
C5—C61.539 (2)C18—H180.9300
C5—H5A0.9700C19—C201.369 (2)
C5—H5B0.9700C19—H190.9300
C6—C81.499 (2)C20—C211.389 (2)
C6—C71.547 (2)C20—H200.9300
C6—H60.9800C21—H210.9300
C7—N11.4628 (17)C22—O21.4181 (18)
C7—C161.5111 (19)C22—H22A0.9600
C7—H70.9800C22—H22B0.9600
C8—O11.2099 (18)C22—H22C0.9600
C9—C101.389 (2)C23—O31.414 (2)
C9—C141.4044 (19)C23—H23A0.9600
C10—C111.386 (2)C23—H23B0.9600
C10—H100.9300C23—H23C0.9600
C11—C121.373 (2)N1—H1A0.862 (15)
C11—H110.9300
N1—C1—C9108.50 (11)C12—C11—H11120.3
N1—C1—C2110.35 (11)C10—C11—H11120.3
C9—C1—C2114.20 (11)C11—C12—C13120.41 (15)
N1—C1—H1107.9C11—C12—H12119.8
C9—C1—H1107.9C13—C12—H12119.8
C2—C1—H1107.9C12—C13—C14120.17 (15)
C8—C2—C15110.51 (13)C12—C13—H13119.9
C8—C2—C3106.63 (12)C14—C13—H13119.9
C15—C2—C3109.61 (13)O2—C14—C13123.04 (13)
C8—C2—C1105.02 (11)O2—C14—C9116.28 (12)
C15—C2—C1110.47 (12)C13—C14—C9120.67 (14)
C3—C2—C1114.42 (12)C2—C15—H15A109.5
C4—C3—C2116.20 (12)C2—C15—H15B109.5
C4—C3—H3A108.2H15A—C15—H15B109.5
C2—C3—H3A108.2C2—C15—H15C109.5
C4—C3—H3B108.2H15A—C15—H15C109.5
C2—C3—H3B108.2H15B—C15—H15C109.5
H3A—C3—H3B107.4C21—C16—C17117.99 (13)
C3—C4—C5112.60 (14)C21—C16—C7122.65 (12)
C3—C4—H4A109.1C17—C16—C7119.37 (13)
C5—C4—H4A109.1O3—C17—C18123.70 (13)
C3—C4—H4B109.1O3—C17—C16115.52 (12)
C5—C4—H4B109.1C18—C17—C16120.78 (14)
H4A—C4—H4B107.8C19—C18—C17119.62 (14)
C4—C5—C6114.05 (12)C19—C18—H18120.2
C4—C5—H5A108.7C17—C18—H18120.2
C6—C5—H5A108.7C20—C19—C18120.67 (14)
C4—C5—H5B108.7C20—C19—H19119.7
C6—C5—H5B108.7C18—C19—H19119.7
H5A—C5—H5B107.6C19—C20—C21119.53 (16)
C8—C6—C5109.21 (12)C19—C20—H20120.2
C8—C6—C7106.72 (11)C21—C20—H20120.2
C5—C6—C7115.07 (12)C16—C21—C20121.40 (14)
C8—C6—H6108.6C16—C21—H21119.3
C5—C6—H6108.6C20—C21—H21119.3
C7—C6—H6108.6O2—C22—H22A109.5
N1—C7—C16110.89 (11)O2—C22—H22B109.5
N1—C7—C6109.03 (11)H22A—C22—H22B109.5
C16—C7—C6111.68 (11)O2—C22—H22C109.5
N1—C7—H7108.4H22A—C22—H22C109.5
C16—C7—H7108.4H22B—C22—H22C109.5
C6—C7—H7108.4O3—C23—H23A109.5
O1—C8—C6123.22 (14)O3—C23—H23B109.5
O1—C8—C2123.74 (14)H23A—C23—H23B109.5
C6—C8—C2113.02 (12)O3—C23—H23C109.5
C10—C9—C14117.47 (13)H23A—C23—H23C109.5
C10—C9—C1120.91 (12)H23B—C23—H23C109.5
C14—C9—C1121.54 (13)C7—N1—C1113.43 (11)
C11—C10—C9121.82 (14)C7—N1—H1A108.5 (10)
C11—C10—H10119.1C1—N1—H1A106.7 (10)
C9—C10—H10119.1C14—O2—C22118.30 (12)
C12—C11—C10119.47 (15)C17—O3—C23117.79 (13)
N1—C1—C2—C856.53 (14)C9—C10—C11—C12−0.4 (3)
C9—C1—C2—C8179.06 (12)C10—C11—C12—C130.0 (3)
N1—C1—C2—C15175.70 (12)C11—C12—C13—C140.4 (3)
C9—C1—C2—C15−61.77 (16)C12—C13—C14—O2177.88 (14)
N1—C1—C2—C3−60.04 (15)C12—C13—C14—C9−0.5 (2)
C9—C1—C2—C362.49 (16)C10—C9—C14—O2−178.29 (13)
C8—C2—C3—C4−51.75 (17)C1—C9—C14—O2−1.4 (2)
C15—C2—C3—C4−171.39 (14)C10—C9—C14—C130.2 (2)
C1—C2—C3—C463.89 (17)C1—C9—C14—C13177.06 (13)
C2—C3—C4—C544.90 (19)N1—C7—C16—C21−20.15 (19)
C3—C4—C5—C6−43.79 (19)C6—C7—C16—C21101.66 (15)
C4—C5—C6—C851.92 (17)N1—C7—C16—C17160.12 (12)
C4—C5—C6—C7−68.05 (17)C6—C7—C16—C17−78.06 (16)
C8—C6—C7—N1−58.41 (14)C21—C16—C17—O3179.13 (12)
C5—C6—C7—N162.92 (15)C7—C16—C17—O3−1.14 (19)
C8—C6—C7—C16178.70 (11)C21—C16—C17—C18−0.8 (2)
C5—C6—C7—C16−59.97 (16)C7—C16—C17—C18178.93 (13)
C5—C6—C8—O1119.23 (16)O3—C17—C18—C19−179.09 (14)
C7—C6—C8—O1−115.79 (16)C16—C17—C18—C190.8 (2)
C5—C6—C8—C2−62.18 (15)C17—C18—C19—C20−0.1 (2)
C7—C6—C8—C262.80 (15)C18—C19—C20—C21−0.7 (3)
C15—C2—C8—O1−1.6 (2)C17—C16—C21—C200.0 (2)
C3—C2—C8—O1−120.63 (16)C7—C16—C21—C20−179.71 (14)
C1—C2—C8—O1117.57 (16)C19—C20—C21—C160.7 (3)
C15—C2—C8—C6179.84 (13)C16—C7—N1—C1−176.79 (11)
C3—C2—C8—C660.79 (15)C6—C7—N1—C159.86 (15)
C1—C2—C8—C6−61.01 (15)C9—C1—N1—C7174.42 (11)
N1—C1—C9—C1034.09 (17)C2—C1—N1—C7−59.77 (15)
C2—C1—C9—C10−89.44 (16)C13—C14—O2—C229.9 (2)
N1—C1—C9—C14−142.65 (13)C9—C14—O2—C22−171.66 (14)
C2—C1—C9—C1493.82 (16)C18—C17—O3—C239.8 (2)
C14—C9—C10—C110.2 (2)C16—C17—O3—C23−170.10 (16)
C1—C9—C10—C11−176.64 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg1i0.862 (15)2.852 (3)3.6276 (14)150.6 (12)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2190).

References

  • Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575. [PubMed]
  • Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866. [PubMed]
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.
  • Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009). Acta Cryst. E65, o1596. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008). Acta Cryst. E64, o2385. [PMC free article] [PubMed]
  • Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009). Acta Cryst. E65, o1383. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography