PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3136.
Published online 2009 November 21. doi:  10.1107/S1600536809048958
PMCID: PMC2972091

Deacetyl tenuazonic acid p-toluene­sulfonyl­hydrazone

Abstract

The title compound {systematic name: 4-methyl-N′-[(3E)-2-(1-methyl­prop­yl)-5-oxopyrrolidin-3-yl­idene]benzene­sulfono­hydrazide}, C15H21N3O3S, is the condensation product of deacetyl tenuazonic acid (DTA) and p-toluene­sulfonohydrazide. The crystal structure consists of chains along [100] linked by N—H(...)O hydrogen bonds.

Related literature

For the occurrence of tenuazonic acid (TA) in various food matrices, see: Weidenbörner (2001 [triangle]). For potential uses of the title compound in food analysis, see: Siegel, Rasenko et al. (2009 [triangle]). For the crystal structure of DTA, see: Siegel, Koch et al. (2009 [triangle]) and for its synthesis, see: Lebrun et al. (1988 [triangle]); Stickings (1959 [triangle]). For the structure of p-toluene­sulfonyl­hydrazine, see: Roy & Nangia (2007 [triangle]). For the structures of other p-toluene­sulfonyhydrazones, see, for example: Glidewell et al. (2004 [triangle]); Ng (1997 [triangle]); Yan et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3136-scheme1.jpg

Experimental

Crystal data

  • C15H21N3O3S
  • M r = 323.41
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3136-efi1.jpg
  • a = 5.1286 (16) Å
  • b = 8.285 (3) Å
  • c = 38.430 (12) Å
  • V = 1633.0 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 294 K
  • 0.14 × 0.12 × 0.02 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: ψ scan (SHELXTL; Bruker, 2001 [triangle]) T min = 0.970, T max = 0.995
  • 13112 measured reflections
  • 4755 independent reflections
  • 2233 reflections with I > 2σ(I)
  • R int = 0.102

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.097
  • S = 0.77
  • 4755 reflections
  • 196 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1905 Friedel pairs
  • Flack parameter: −0.11 (10)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048958/sj2674sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048958/sj2674Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Deacetyl tenuazonic acid (DTA) is formed upon boiling the Alternaria. mycotoxin tenuazonic acid (TA) in 0.1 M HCl (Stickings, 1959). As TA is frequently encountered in various food matrices (Weidenbörner, 2001), traces of DTA are expected to occur in these matrices as well. We have recently reported a derivatization procedure for TA quantification in food, which is based on hydrazone formation with 2,4-dinitrophenylhydrazine (Siegel, Rasenko et al., 2009) and are currently evaluating a similar procedure for DTA quantification using p-toluenesulfonyl hydrazide. The title compound is the product of the latter derivatization reaction. The stucture of the title compound, (I), is shown below. Each molecule (Fig.1) is connected to three adjacent molecules via N—H···O hydrogen bonds. As a result isolated ribbons are formed along the a axis, as depicted in Fig. 2.

Experimental

DTA was supplied by the workgroup of Professor R. Faust (University of Kassel, Germany) by synthesis according to a literature procedure (Lebrun et al., 1988). Its identity was confirmed by x-ray crystallography (Siegel, Kochet al., 2009). The title compound was synthesized by dissolving 20 mg (1 eq., 0.13 mmol) of DTA and a five fold molar excess of p-toluenesulfonyl hydrazide (5 eq., 0.65 mmol, 121 mg) in 50 ml 2 M HCl. After 30 minutes of shaking the precipitate was collected, washed with water, dissolved in ethyl acetate and dried with sodium sulfate. After evaporation of the solvent, a yellow powder was obtained, which was recrystallized from ethanol twice. For single-crystal x-ray crystallography, orange crystals of the title compound were grown by solvent evaporation (methanol:water 50:50 v:v) at ambient temperature over a period of three weeks.

Refinement

All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were located in difference maps but positioned with idealized geometry and refined using the riding model,with C—H = 0.98–1 Å or N—H = 0.9 Å and Uiso(H) = 1.2 Ueq (C, N) or 1.5 Ueq(Cmethyl).

Figures

Fig. 1.
The structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
View of the unit cell of the title compound along [100] (upper picture) and [010] (lower picture) showing the hydrogen bond system drawn as dashed lines.

Crystal data

C15H21N3O3SF(000) = 688
Mr = 323.41Dx = 1.315 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 122 reflections
a = 5.1286 (16) Åθ = 4–23°
b = 8.285 (3) ŵ = 0.21 mm1
c = 38.430 (12) ÅT = 294 K
V = 1633.0 (9) Å3Needle, colourless
Z = 40.14 × 0.12 × 0.02 mm

Data collection

Bruker APEX CCD area-detector diffractometer4755 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
graphiteRint = 0.102
ω/2θ scansθmax = 31.1°, θmin = 2.1°
Absorption correction: ψ scan (SHELXTL; Bruker, 2001)h = −7→7
Tmin = 0.970, Tmax = 0.995k = −12→12
13112 measured reflectionsl = −55→55

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.0333P)2] where P = (Fo2 + 2Fc2)/3
S = 0.77(Δ/σ)max = 0.008
4755 reflectionsΔρmax = 0.21 e Å3
196 parametersΔρmin = −0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1905 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.11 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.74721 (13)0.49291 (7)0.097917 (14)0.04011 (15)
O1−0.0629 (4)0.3828 (2)0.23977 (4)0.0606 (5)
O20.6752 (4)0.63657 (18)0.08020 (4)0.0527 (5)
O31.0099 (3)0.4666 (2)0.10814 (4)0.0519 (5)
N10.5727 (4)0.4954 (2)0.13411 (4)0.0390 (4)
H10.37690.51320.13020.047*
N20.6024 (4)0.3487 (2)0.15275 (5)0.0383 (5)
N30.2395 (4)0.1958 (2)0.22262 (5)0.0448 (5)
H30.19360.12210.23710.054*
C10.4445 (5)0.3286 (3)0.17784 (6)0.0347 (5)
C20.2331 (6)0.4344 (3)0.19185 (6)0.0462 (6)
H2A0.30380.53540.20050.055*
H2B0.10390.45740.17410.055*
C30.1172 (5)0.3376 (3)0.22082 (6)0.0445 (6)
C40.4556 (5)0.1730 (3)0.19850 (6)0.0364 (6)
H40.61900.17000.21170.044*
C50.4380 (4)0.0220 (3)0.17583 (5)0.0366 (5)
H50.56860.03390.15740.044*
C60.1756 (4)0.0098 (3)0.15812 (6)0.0542 (7)
H6A0.13960.11140.14650.065*
H6B0.0428−0.00540.17580.065*
C70.1531 (6)−0.1253 (4)0.13175 (7)0.0741 (10)
H7A0.2885−0.11450.11470.111*
H7B−0.0139−0.11970.12050.111*
H7C0.1703−0.22740.14330.111*
C80.5103 (4)−0.1307 (2)0.19639 (5)0.0529 (8)
H8A0.6778−0.11620.20710.079*
H8B0.5166−0.22140.18090.079*
H8C0.3816−0.14980.21410.079*
C90.6413 (3)0.32472 (18)0.07366 (4)0.0374 (6)
C100.7575 (3)0.17800 (18)0.07827 (4)0.0494 (6)
H100.89850.16740.09330.059*
C110.6641 (6)0.0458 (3)0.06047 (7)0.0565 (8)
H110.7440−0.05390.06370.068*
C120.4556 (6)0.0576 (3)0.03813 (7)0.0529 (7)
C130.3442 (6)0.2071 (4)0.03385 (7)0.0593 (8)
H130.20380.21830.01870.071*
C140.4359 (5)0.3420 (3)0.05156 (6)0.0488 (7)
H140.35830.44240.04830.059*
C150.3523 (7)−0.0880 (4)0.01904 (8)0.0868 (11)
H15A0.4174−0.0880−0.00440.130*
H15B0.1652−0.08430.01860.130*
H15C0.4083−0.18440.03070.130*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0445 (3)0.0340 (3)0.0418 (3)−0.0070 (4)0.0058 (3)0.0019 (3)
O10.0621 (12)0.0658 (13)0.0540 (11)−0.0020 (10)0.0229 (11)−0.0140 (9)
O20.0702 (14)0.0343 (10)0.0538 (10)−0.0042 (9)0.0046 (10)0.0118 (8)
O30.0363 (9)0.0603 (12)0.0590 (10)−0.0088 (9)0.0040 (8)−0.0056 (9)
N10.0412 (10)0.0320 (10)0.0438 (10)−0.0030 (11)0.0070 (9)0.0008 (10)
N20.0399 (11)0.0344 (11)0.0405 (11)−0.0056 (9)0.0043 (11)0.0034 (9)
N30.0547 (13)0.0410 (12)0.0387 (11)−0.0104 (13)0.0126 (12)0.0005 (9)
C10.0347 (13)0.0331 (13)0.0364 (13)−0.0067 (11)−0.0005 (12)−0.0063 (11)
C20.0526 (16)0.0364 (13)0.0497 (14)−0.0069 (14)0.0110 (14)−0.0034 (10)
C30.0502 (16)0.0458 (17)0.0375 (14)−0.0101 (14)0.0051 (13)−0.0131 (12)
C40.0351 (14)0.0401 (14)0.0339 (13)−0.0102 (12)0.0025 (11)0.0021 (11)
C50.0367 (13)0.0353 (14)0.0378 (12)0.0002 (12)0.0025 (10)0.0004 (11)
C60.0496 (16)0.0443 (15)0.0685 (17)0.0041 (14)−0.0143 (13)−0.0161 (15)
C70.088 (3)0.0531 (19)0.082 (2)0.0056 (17)−0.0259 (19)−0.0128 (16)
C80.061 (2)0.0438 (17)0.0543 (17)−0.0015 (14)0.0013 (14)0.0120 (13)
C90.0390 (15)0.0374 (14)0.0357 (14)−0.0051 (12)0.0044 (12)0.0051 (11)
C100.0548 (16)0.0423 (14)0.0511 (15)0.0011 (17)−0.0117 (15)0.0008 (12)
C110.071 (2)0.0400 (17)0.0582 (17)0.0025 (13)−0.0077 (15)0.0011 (12)
C120.0618 (19)0.0510 (18)0.0460 (16)−0.0095 (15)−0.0003 (15)−0.0076 (13)
C130.0557 (19)0.071 (2)0.0515 (17)0.0002 (16)−0.0091 (15)−0.0086 (15)
C140.0549 (17)0.0453 (16)0.0462 (15)0.0059 (14)−0.0019 (14)−0.0006 (12)
C150.104 (3)0.068 (2)0.089 (2)−0.014 (2)−0.015 (2)−0.0270 (18)

Geometric parameters (Å, °)

S1—O31.4200 (17)C6—H6A0.9700
S1—O21.4201 (16)C6—H6B0.9700
S1—N11.6542 (18)C7—H7A0.9600
S1—C91.7624 (18)C7—H7B0.9600
O1—C31.235 (3)C7—H7C0.9600
N1—N21.419 (2)C8—H8A0.9600
N1—H11.0263C8—H8B0.9600
N2—C11.270 (3)C8—H8C0.9600
N3—C31.333 (3)C9—C101.3653
N3—C41.457 (3)C9—C141.361 (3)
N3—H30.8600C10—C111.377 (3)
C1—C21.494 (3)C10—H100.9300
C1—C41.515 (3)C11—C121.375 (4)
C2—C31.495 (3)C11—H110.9300
C2—H2A0.9700C12—C131.374 (4)
C2—H2B0.9700C12—C151.508 (4)
C4—C51.527 (3)C13—C141.391 (3)
C4—H40.9800C13—H130.9300
C5—C61.511 (3)C14—H140.9300
C5—C81.537 (3)C15—H15A0.9600
C5—H50.9800C15—H15B0.9600
C6—C71.515 (3)C15—H15C0.9600
O3—S1—O2120.52 (11)C5—C6—H6B108.6
O3—S1—N1106.41 (10)C7—C6—H6B108.6
O2—S1—N1104.60 (10)H6A—C6—H6B107.6
O3—S1—C9108.51 (10)C6—C7—H7A109.5
O2—S1—C9109.21 (9)C6—C7—H7B109.5
N1—S1—C9106.72 (9)H7A—C7—H7B109.5
N2—N1—S1110.85 (14)C6—C7—H7C109.5
N2—N1—H1107.6H7A—C7—H7C109.5
S1—N1—H1114.1H7B—C7—H7C109.5
C1—N2—N1115.28 (18)C5—C8—H8A109.5
C3—N3—C4116.02 (19)C5—C8—H8B109.5
C3—N3—H3122.0H8A—C8—H8B109.5
C4—N3—H3122.0C5—C8—H8C109.5
N2—C1—C2131.2 (2)H8A—C8—H8C109.5
N2—C1—C4119.1 (2)H8B—C8—H8C109.5
C2—C1—C4109.71 (19)C10—C9—C14120.84 (13)
C3—C2—C1104.0 (2)C10—C9—S1120.06 (6)
C3—C2—H2A111.0C14—C9—S1119.04 (15)
C1—C2—H2A111.0C9—C10—C11119.48 (14)
C3—C2—H2B111.0C9—C10—H10120.3
C1—C2—H2B111.0C11—C10—H10120.3
H2A—C2—H2B109.0C12—C11—C10121.6 (2)
O1—C3—N3126.1 (2)C12—C11—H11119.2
O1—C3—C2125.0 (2)C10—C11—H11119.2
N3—C3—C2108.9 (2)C11—C12—C13117.5 (2)
N3—C4—C1101.24 (19)C11—C12—C15121.4 (3)
N3—C4—C5115.09 (18)C13—C12—C15121.1 (3)
C1—C4—C5113.32 (18)C12—C13—C14121.7 (3)
N3—C4—H4109.0C12—C13—H13119.2
C1—C4—H4109.0C14—C13—H13119.2
C5—C4—H4109.0C9—C14—C13118.8 (2)
C6—C5—C4111.3 (2)C9—C14—H14120.6
C6—C5—C8113.0 (2)C13—C14—H14120.6
C4—C5—C8111.52 (17)C12—C15—H15A109.5
C6—C5—H5106.8C12—C15—H15B109.5
C4—C5—H5106.8H15A—C15—H15B109.5
C8—C5—H5106.8C12—C15—H15C109.5
C5—C6—C7114.8 (2)H15A—C15—H15C109.5
C5—C6—H6A108.6H15B—C15—H15C109.5
C7—C6—H6A108.6
O3—S1—N1—N2−58.11 (17)N3—C4—C5—C8−76.8 (2)
O2—S1—N1—N2173.28 (14)C1—C4—C5—C8167.36 (18)
C9—S1—N1—N257.61 (15)C4—C5—C6—C7172.9 (2)
S1—N1—N2—C1−169.08 (16)C8—C5—C6—C7−60.6 (3)
N1—N2—C1—C2−1.3 (4)O3—S1—C9—C1024.73 (9)
N1—N2—C1—C4177.98 (18)O2—S1—C9—C10157.88 (8)
N2—C1—C2—C3178.5 (2)N1—S1—C9—C10−89.58 (8)
C4—C1—C2—C3−0.8 (2)O3—S1—C9—C14−158.08 (16)
C4—N3—C3—O1−177.0 (2)O2—S1—C9—C14−24.93 (18)
C4—N3—C3—C23.1 (3)N1—S1—C9—C1487.61 (17)
C1—C2—C3—O1178.9 (2)C14—C9—C10—C11−0.46 (17)
C1—C2—C3—N3−1.3 (3)S1—C9—C10—C11176.68 (18)
C3—N3—C4—C1−3.4 (2)C9—C10—C11—C12−0.1 (3)
C3—N3—C4—C5−126.0 (2)C10—C11—C12—C130.6 (4)
N2—C1—C4—N3−177.1 (2)C10—C11—C12—C15−179.3 (2)
C2—C1—C4—N32.3 (2)C11—C12—C13—C14−0.5 (4)
N2—C1—C4—C5−53.3 (3)C15—C12—C13—C14179.4 (3)
C2—C1—C4—C5126.1 (2)C10—C9—C14—C130.5 (3)
N3—C4—C5—C650.5 (3)S1—C9—C14—C13−176.63 (18)
C1—C4—C5—C6−65.4 (3)C12—C13—C14—C90.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.273.104 (3)162
N1—H1···O3ii1.032.103.063 (3)156

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2674).

References

  • Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. E60, o520–o522.
  • Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77–84.
  • Ng, S. W. (1997). Z. Kristallogr. New Cryst. Struct. 212, 277–278.
  • Roy, S. & Nangia, A. (2007). Acta Cryst. E63, o3696.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siegel, D., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o1201. [PMC free article] [PubMed]
  • Siegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A, 1216, 4582–4588. [PubMed]
  • Stickings, C. E. (1959). Biochem. J. 72, 332–340. [PubMed]
  • Weidenbörner, M. (2001). Encyclopedia of Food Mycotoxins. Berlin: Springer.
  • Yan, X.-J., Liang, X.-M., Jin, S.-H. & Wang, D.-Q. (2008). Acta Cryst. E64, o657. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography