PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1684.
Published online 2009 November 28. doi:  10.1107/S1600536809049642
PMCID: PMC2972084

Di-μ2-bromido-bis­[bromido(η6-1,2,4,5-tetra­methyl­benzene)ruthenium(II)]

Abstract

The asymmetric unit of the title compound, [Ru2Br4(C10H14)2], contains one half of the centrosymmetric mol­ecule. Each Ru center is coordinated by tetra­methyl­benzene ring in a η6-coordination mode, and one terminal and two bridging bromine atoms. The aromatic rings and the Ru2Br2 four-membered ring form a dihedral angle of 55.99 (8)°. In the crystal structure, weak inter­molecular C—H(...)Br inter­actions link mol­ecules into chains propagated in [001].

Related literature

For our work on the synthesis and catalytic applications of ruthenium–arene complexes, see: Cerón-Camacho et al. (2006 [triangle]); Díaz Camacho et al. (2008 [triangle]). For related structures, see: González-Torres et al. (2009 [triangle]) and references therein. For details of the synthesis, see: Bennett et al. (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1684-scheme1.jpg

Experimental

Crystal data

  • [Ru2Br4(C10H14)2]
  • M r = 790.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1684-efi1.jpg
  • a = 7.8866 (13) Å
  • b = 8.2873 (14) Å
  • c = 9.8627 (17) Å
  • α = 88.335 (2)°
  • β = 74.508 (2)°
  • γ = 69.648 (2)°
  • V = 580.96 (17) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 8.18 mm−1
  • T = 298 K
  • 0.35 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: face indexed-numerical (SHELXTL>; Sheldrick, 2008 [triangle]) T min = 0.139, T max = 0.478
  • 4786 measured reflections
  • 2108 independent reflections
  • 1878 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.060
  • S = 1.00
  • 2108 reflections
  • 122 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049642/cv2636sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049642/cv2636Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support of this research by the Consejo Nacional de Ciencia y Tecnologia [CONACYT, grant Nos. F58692 & F57556] and the Dirección General de Asuntos del Personal Académico [DGAPA-UNAM, grant Nos. IN227008 & IN205209] is gratefully acknowledged.

supplementary crystallographic information

Comment

In continuation of our studies of ruthenium arene complexes (Díaz Camacho et al. 2008; Cerón-Camacho et al. 2006; González-Torres, et al. 2009), we present here the title compound (I).

The asymmetric unit of (I) consists of a half molecule, which is completed with a symmetry operation of 1 - x, 1 - y, 1 - z (Fig. 1). The bond lengths and angles in η6 - tetramethylbenzene fragment are in accordance with those observed in similar structures (González-Torres et al., 2009 and references therein). Complex (I) exhibits a typical η6 - arene coordination of the tetramethylbenzene fragment to the ruthenium dinuclear structure bridged by two bromines and completing the coordination sphere two bromines one for each ruthenium atom arranged in a trans geometry. The η6 - arene fragment and the metal coordination center bridge (Br2—Ru—Br2 symmetry related) form a dihedral angle of 55.99 (8)°.

In the crystal structure, the molecules are linked by weak C—H···Br interaction (Table 1) into chains along direction [001].

Experimental

The title compound was prepared according to the procedure reported by Bennett et al. (1982). Spectroscopic analysis agreed with that reported in the same reference.

Refinement

C-bound H atoms were placed in geometrically idealized positions (C—H 0.93-0.96 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq (C).

Figures

Fig. 1.
Molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) 1 - x, 1 - y, 1 - z].

Crystal data

[Ru2Br4(C10H14)2]Z = 1
Mr = 790.20F(000) = 376
Triclinic, P1Dx = 2.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8866 (13) ÅCell parameters from 3668 reflections
b = 8.2873 (14) Åθ = 2.6–25.4°
c = 9.8627 (17) ŵ = 8.18 mm1
α = 88.335 (2)°T = 298 K
β = 74.508 (2)°Prism, red
γ = 69.648 (2)°0.35 × 0.15 × 0.12 mm
V = 580.96 (17) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2108 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
graphiteRint = 0.063
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.2°
ω scansh = −9→9
Absorption correction: face indexed-numerical (SHELXTL; Sheldrick, 2008)k = −9→9
Tmin = 0.139, Tmax = 0.478l = −11→11
4786 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0227P)2] where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru0.63750 (4)0.49125 (3)0.30491 (3)0.02810 (10)
Br10.64758 (5)0.29795 (4)0.51434 (4)0.04089 (12)
Br20.41130 (6)0.36687 (6)0.24801 (4)0.05137 (14)
C10.8371 (5)0.3925 (4)0.0980 (4)0.0367 (8)
C20.9352 (5)0.3568 (4)0.2017 (4)0.0379 (8)
C30.9134 (5)0.4943 (4)0.2952 (4)0.0377 (8)
H30.97890.46990.36340.045*
C40.7972 (5)0.6654 (4)0.2891 (4)0.0407 (9)
C50.6944 (5)0.7014 (4)0.1860 (4)0.0396 (9)
C60.7172 (5)0.5650 (5)0.0931 (4)0.0389 (8)
H60.65070.58880.02550.047*
C70.8478 (6)0.2543 (5)−0.0040 (4)0.0546 (11)
H7A0.77340.3062−0.06720.082*
H7B0.80060.17170.04750.082*
H7C0.97620.1974−0.05720.082*
C81.0565 (6)0.1754 (5)0.2196 (5)0.0557 (11)
H8A1.17640.14500.15050.084*
H8B0.99590.09670.20730.084*
H8C1.07440.16920.31240.084*
C90.7843 (7)0.8028 (5)0.3909 (5)0.0620 (12)
H9A0.85140.75060.45840.093*
H9B0.65470.86390.43920.093*
H9C0.83850.88180.34050.093*
C100.5588 (7)0.8778 (5)0.1774 (5)0.0629 (13)
H10A0.48300.87070.11760.094*
H10B0.62710.95200.13890.094*
H10C0.47920.92360.27000.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru0.02570 (16)0.02940 (16)0.02784 (16)−0.01036 (12)−0.00439 (11)0.00292 (10)
Br10.0380 (2)0.0341 (2)0.0370 (2)−0.00366 (16)−0.00100 (16)0.00683 (15)
Br20.0483 (3)0.0736 (3)0.0462 (2)−0.0382 (2)−0.0134 (2)0.00497 (19)
C10.0333 (19)0.0419 (19)0.0313 (18)−0.0173 (16)0.0031 (15)−0.0009 (15)
C20.0252 (17)0.0367 (19)0.045 (2)−0.0104 (15)0.0003 (15)0.0011 (15)
C30.0300 (19)0.045 (2)0.042 (2)−0.0177 (16)−0.0095 (16)0.0051 (16)
C40.045 (2)0.0378 (19)0.040 (2)−0.0241 (17)−0.0011 (17)0.0014 (15)
C50.039 (2)0.0362 (18)0.040 (2)−0.0169 (17)−0.0010 (16)0.0090 (15)
C60.041 (2)0.049 (2)0.0294 (17)−0.0213 (18)−0.0081 (16)0.0099 (15)
C70.056 (3)0.060 (3)0.047 (2)−0.029 (2)0.001 (2)−0.013 (2)
C80.038 (2)0.046 (2)0.069 (3)−0.0035 (19)−0.007 (2)0.002 (2)
C90.084 (3)0.057 (2)0.056 (3)−0.045 (3)−0.008 (2)−0.006 (2)
C100.066 (3)0.043 (2)0.065 (3)−0.013 (2)−0.006 (2)0.021 (2)

Geometric parameters (Å, °)

Ru—C62.150 (3)C4—C51.427 (5)
Ru—C32.161 (4)C4—C91.498 (5)
Ru—C52.180 (4)C5—C61.408 (5)
Ru—C22.182 (3)C5—C101.497 (5)
Ru—C12.191 (3)C6—H60.9300
Ru—C42.200 (4)C7—H7A0.9600
Ru—Br22.5313 (6)C7—H7B0.9600
Ru—Br1i2.5676 (5)C7—H7C0.9600
Ru—Br12.5780 (5)C8—H8A0.9600
Br1—Rui2.5676 (5)C8—H8B0.9600
C1—C21.407 (5)C8—H8C0.9600
C1—C61.421 (5)C9—H9A0.9600
C1—C71.511 (5)C9—H9B0.9600
C2—C31.421 (5)C9—H9C0.9600
C2—C81.510 (5)C10—H10A0.9600
C3—C41.406 (5)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C6—Ru—C379.89 (15)C4—C3—C2122.8 (3)
C6—Ru—C537.93 (13)C4—C3—Ru72.7 (2)
C3—Ru—C568.14 (14)C2—C3—Ru71.7 (2)
C6—Ru—C268.16 (14)C4—C3—H3118.6
C3—Ru—C238.18 (13)C2—C3—H3118.6
C5—Ru—C281.73 (14)Ru—C3—H3129.7
C6—Ru—C138.21 (14)C3—C4—C5118.3 (3)
C3—Ru—C168.06 (13)C3—C4—C9119.3 (4)
C5—Ru—C169.31 (13)C5—C4—C9122.4 (3)
C2—Ru—C137.53 (14)C3—C4—Ru69.7 (2)
C6—Ru—C468.13 (14)C5—C4—Ru70.2 (2)
C3—Ru—C437.60 (13)C9—C4—Ru131.5 (3)
C5—Ru—C438.01 (14)C6—C5—C4118.6 (3)
C2—Ru—C469.00 (13)C6—C5—C10119.3 (4)
C1—Ru—C481.45 (13)C4—C5—C10122.0 (4)
C6—Ru—Br292.41 (11)C6—C5—Ru69.9 (2)
C3—Ru—Br2154.25 (9)C4—C5—Ru71.7 (2)
C5—Ru—Br2119.06 (11)C10—C5—Ru128.2 (3)
C2—Ru—Br2116.19 (10)C5—C6—C1122.9 (3)
C1—Ru—Br290.67 (10)C5—C6—Ru72.2 (2)
C4—Ru—Br2157.03 (10)C1—C6—Ru72.4 (2)
C6—Ru—Br1i119.11 (10)C5—C6—H6118.5
C3—Ru—Br1i118.25 (9)C1—C6—H6118.5
C5—Ru—Br1i92.02 (9)Ru—C6—H6129.5
C2—Ru—Br1i156.13 (10)C1—C7—H7A109.5
C1—Ru—Br1i157.12 (10)C1—C7—H7B109.5
C4—Ru—Br1i91.93 (9)H7A—C7—H7B109.5
Br2—Ru—Br1i87.02 (2)C1—C7—H7C109.5
C6—Ru—Br1158.03 (10)H7A—C7—H7C109.5
C3—Ru—Br190.73 (10)H7B—C7—H7C109.5
C5—Ru—Br1152.74 (10)C2—C8—H8A109.5
C2—Ru—Br192.20 (10)C2—C8—H8B109.5
C1—Ru—Br1119.82 (10)H8A—C8—H8B109.5
C4—Ru—Br1115.15 (10)C2—C8—H8C109.5
Br2—Ru—Br187.508 (18)H8A—C8—H8C109.5
Br1i—Ru—Br182.838 (17)H8B—C8—H8C109.5
Rui—Br1—Ru97.162 (17)C4—C9—H9A109.5
C2—C1—C6118.3 (3)C4—C9—H9B109.5
C2—C1—C7122.8 (3)H9A—C9—H9B109.5
C6—C1—C7118.8 (3)C4—C9—H9C109.5
C2—C1—Ru70.89 (19)H9A—C9—H9C109.5
C6—C1—Ru69.36 (18)H9B—C9—H9C109.5
C7—C1—Ru129.3 (3)C5—C10—H10A109.5
C1—C2—C3119.0 (3)C5—C10—H10B109.5
C1—C2—C8121.6 (3)H10A—C10—H10B109.5
C3—C2—C8119.3 (3)C5—C10—H10C109.5
C1—C2—Ru71.58 (19)H10A—C10—H10C109.5
C3—C2—Ru70.13 (19)H10B—C10—H10C109.5
C8—C2—Ru128.1 (3)
C6—Ru—Br1—Rui−177.6 (3)Ru—C3—C4—C5−52.5 (3)
C3—Ru—Br1—Rui118.39 (9)C2—C3—C4—C9−179.3 (4)
C5—Ru—Br1—Rui80.4 (2)Ru—C3—C4—C9127.1 (4)
C2—Ru—Br1—Rui156.56 (10)C2—C3—C4—Ru53.6 (3)
C1—Ru—Br1—Rui−176.65 (12)C6—Ru—C4—C3−102.2 (2)
C4—Ru—Br1—Rui88.77 (10)C5—Ru—C4—C3−132.1 (3)
Br2—Ru—Br1—Rui−87.31 (2)C2—Ru—C4—C3−28.2 (2)
Br1i—Ru—Br1—Rui0.0C1—Ru—C4—C3−64.9 (2)
C6—Ru—C1—C2131.8 (3)Br2—Ru—C4—C3−136.0 (2)
C3—Ru—C1—C229.9 (2)Br1i—Ru—C4—C3137.1 (2)
C5—Ru—C1—C2103.8 (2)Br1—Ru—C4—C354.1 (2)
C4—Ru—C1—C266.5 (2)C6—Ru—C4—C529.92 (19)
Br2—Ru—C1—C2−135.2 (2)C3—Ru—C4—C5132.1 (3)
Br1i—Ru—C1—C2140.9 (2)C2—Ru—C4—C5103.9 (2)
Br1—Ru—C1—C2−47.7 (2)C1—Ru—C4—C567.2 (2)
C3—Ru—C1—C6−101.9 (2)Br2—Ru—C4—C5−3.9 (4)
C5—Ru—C1—C6−27.9 (2)Br1i—Ru—C4—C5−90.81 (19)
C2—Ru—C1—C6−131.8 (3)Br1—Ru—C4—C5−173.80 (16)
C4—Ru—C1—C6−65.3 (2)C6—Ru—C4—C9146.2 (4)
Br2—Ru—C1—C693.0 (2)C3—Ru—C4—C9−111.6 (5)
Br1i—Ru—C1—C69.1 (4)C5—Ru—C4—C9116.3 (5)
Br1—Ru—C1—C6−179.45 (18)C2—Ru—C4—C9−139.8 (4)
C6—Ru—C1—C7−111.0 (4)C1—Ru—C4—C9−176.5 (4)
C3—Ru—C1—C7147.2 (4)Br2—Ru—C4—C9112.4 (4)
C5—Ru—C1—C7−138.9 (4)Br1i—Ru—C4—C925.5 (4)
C2—Ru—C1—C7117.2 (4)Br1—Ru—C4—C9−57.5 (4)
C4—Ru—C1—C7−176.3 (4)C3—C4—C5—C6−1.4 (5)
Br2—Ru—C1—C7−17.9 (3)C9—C4—C5—C6179.0 (3)
Br1i—Ru—C1—C7−101.9 (4)Ru—C4—C5—C6−53.7 (3)
Br1—Ru—C1—C769.6 (4)C3—C4—C5—C10176.4 (4)
C6—C1—C2—C3−1.2 (5)C9—C4—C5—C10−3.2 (6)
C7—C1—C2—C3−178.6 (3)Ru—C4—C5—C10124.1 (4)
Ru—C1—C2—C3−53.6 (3)C3—C4—C5—Ru52.3 (3)
C6—C1—C2—C8176.3 (4)C9—C4—C5—Ru−127.3 (4)
C7—C1—C2—C8−1.1 (6)C3—Ru—C5—C6102.0 (2)
Ru—C1—C2—C8123.9 (4)C2—Ru—C5—C664.8 (2)
C6—C1—C2—Ru52.4 (3)C1—Ru—C5—C628.1 (2)
C7—C1—C2—Ru−125.0 (4)C4—Ru—C5—C6131.1 (3)
C6—Ru—C2—C1−29.8 (2)Br2—Ru—C5—C6−50.6 (2)
C3—Ru—C2—C1−131.6 (3)Br1i—Ru—C5—C6−138.3 (2)
C5—Ru—C2—C1−66.6 (2)Br1—Ru—C5—C6143.5 (2)
C4—Ru—C2—C1−103.8 (2)C6—Ru—C5—C4−131.1 (3)
Br2—Ru—C2—C151.8 (2)C3—Ru—C5—C4−29.2 (2)
Br1i—Ru—C2—C1−142.7 (2)C2—Ru—C5—C4−66.3 (2)
Br1—Ru—C2—C1140.1 (2)C1—Ru—C5—C4−103.0 (2)
C6—Ru—C2—C3101.8 (2)Br2—Ru—C5—C4178.27 (16)
C5—Ru—C2—C364.9 (2)Br1i—Ru—C5—C490.55 (19)
C1—Ru—C2—C3131.6 (3)Br1—Ru—C5—C412.3 (3)
C4—Ru—C2—C327.8 (2)C6—Ru—C5—C10112.1 (5)
Br2—Ru—C2—C3−176.69 (17)C3—Ru—C5—C10−146.0 (4)
Br1i—Ru—C2—C3−11.2 (4)C2—Ru—C5—C10176.9 (4)
Br1—Ru—C2—C3−88.4 (2)C1—Ru—C5—C10140.2 (4)
C6—Ru—C2—C8−146.0 (4)C4—Ru—C5—C10−116.8 (4)
C3—Ru—C2—C8112.3 (4)Br2—Ru—C5—C1061.5 (4)
C5—Ru—C2—C8177.2 (4)Br1i—Ru—C5—C10−26.2 (4)
C1—Ru—C2—C8−116.2 (4)Br1—Ru—C5—C10−104.5 (4)
C4—Ru—C2—C8140.0 (4)C4—C5—C6—C10.4 (5)
Br2—Ru—C2—C8−64.4 (4)C10—C5—C6—C1−177.4 (4)
Br1i—Ru—C2—C8101.1 (4)Ru—C5—C6—C1−54.1 (3)
Br1—Ru—C2—C823.9 (3)C4—C5—C6—Ru54.6 (3)
C1—C2—C3—C40.2 (5)C10—C5—C6—Ru−123.3 (4)
C8—C2—C3—C4−177.4 (4)C2—C1—C6—C50.9 (5)
Ru—C2—C3—C4−54.1 (3)C7—C1—C6—C5178.4 (3)
C1—C2—C3—Ru54.3 (3)Ru—C1—C6—C554.0 (3)
C8—C2—C3—Ru−123.3 (3)C2—C1—C6—Ru−53.1 (3)
C6—Ru—C3—C467.1 (2)C7—C1—C6—Ru124.4 (3)
C5—Ru—C3—C429.5 (2)C3—Ru—C6—C5−67.3 (2)
C2—Ru—C3—C4134.5 (3)C2—Ru—C6—C5−105.2 (2)
C1—Ru—C3—C4105.1 (2)C1—Ru—C6—C5−134.5 (3)
Br2—Ru—C3—C4141.4 (2)C4—Ru—C6—C5−30.0 (2)
Br1i—Ru—C3—C4−50.6 (2)Br2—Ru—C6—C5137.5 (2)
Br1—Ru—C3—C4−132.8 (2)Br1i—Ru—C6—C549.5 (2)
C6—Ru—C3—C2−67.4 (2)Br1—Ru—C6—C5−133.2 (2)
C5—Ru—C3—C2−105.0 (2)C3—Ru—C6—C167.2 (2)
C1—Ru—C3—C2−29.4 (2)C5—Ru—C6—C1134.5 (3)
C4—Ru—C3—C2−134.5 (3)C2—Ru—C6—C129.3 (2)
Br2—Ru—C3—C26.9 (4)C4—Ru—C6—C1104.5 (2)
Br1i—Ru—C3—C2174.90 (17)Br2—Ru—C6—C1−88.0 (2)
Br1—Ru—C3—C292.6 (2)Br1i—Ru—C6—C1−175.95 (18)
C2—C3—C4—C51.1 (5)Br1—Ru—C6—C11.3 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Br2ii0.932.863.739 (4)158

Symmetry codes: (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2636).

References

  • Bennett, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74–78.
  • Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A, 247, 124–129.
  • Díaz Camacho, F., Le Lagadec, R., Ryabov, A. D. & Alexandrova, L. (2008). J. Polym. Sci.: Part A: Polym. Chem. 46, 4193–4204.
  • González-Torres, Y., Espinosa-Jalapa, N., Hernández-Ortega, S., Le Lagadec, R. & Morales-Morales, D. (2009). Acta Cryst. E65, m1369. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography