PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o2997.
Published online 2009 November 4. doi:  10.1107/S1600536809045619
PMCID: PMC2972073

1,4-Bis{3-[4-(dimethyl­amino)benzyl­ideneamino]prop­yl}piperazine

Abstract

The mol­ecule of the title compound, C28H42N6, has site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-o2997-efi1.jpg with the centroid of the piperazine ring located on an inversion center. The piperazine ring adopts a chair conformation. The benzene ring and propyl­piperazine are on opposite sides of the C=N bond, showing an E configuration.

Related literature

For applications of Schiff base compounds, see: Basak et al. (2008 [triangle]); Jiang et al. (2008 [triangle]); Xu et al. (2008 [triangle]). For N,N′-disubstituted piperazine derivatives, see: Yogavel et al. (2003 [triangle]). For related structures, see: Paital et al. (2009 [triangle]); Thirumurugan et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2997-scheme1.jpg

Experimental

Crystal data

  • C28H42N6
  • M r = 462.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2997-efi2.jpg
  • a = 17.599 (2) Å
  • b = 6.4146 (12) Å
  • c = 12.6643 (18) Å
  • β = 105.921 (3)°
  • V = 1374.8 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 K
  • 0.15 × 0.09 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 6788 measured reflections
  • 2416 independent reflections
  • 961 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095
  • wR(F 2) = 0.298
  • S = 1.34
  • 2416 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045619/xu2643sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045619/xu2643Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Key Project for Fundamental Research of the Jiangsu Provincial Educational Committee (07 K J A 150011) and the Qinglan Project of Jiangsu Province, China (2008).

supplementary crystallographic information

Comment

Schiff bases and their metal complexes have been of great interest for many years due to their fascinating structural features, attactive properties and potential applications in many fields (Basak et al., 2008; Jiang et al., 2008; Xu et al., 2008). While N,N'- disubstituted piperazines derivatives are antifilarial, antiamoebic and spermicidal agents (Yogavel et al., 2003), therefore, studies on Schiff bases and their complexes derived from N,N'- disubstituted piperazines are of importance. As part of our work, the title compound,(I), a new tetradentate Schiff base ligand, are synthesized in our group and its crystal structure is reported here.

The molecular structure of (I) with atom-numbering scheme is shown in Fig.1. The bond length of C1—N2 (1.278 (7) Å) is equal to that of C1A—N2A, which is much shorter than the C—N single bond length (1.47 - 1.50 Å) and comparable with the reported values (Yogavel et al., 2003; Thirumurugan et al., 1998), indicating that the C—N bonds are double bonds. Two phenyl rings (C2—C7 and C2A—C7A) in (I) are perfectly parellel to each other. As for the piperazine moiety, the four atoms C13—C14—C13A—C14A are coplanar, and N3 atom or N3A atom lies above or below the mean plan by 0.6510 or -0.6510 Å. Furthermore, the plan makes dihedral angles of 129 ° with ring C13—N3—C14A or ring C13A—N3A—C14, indicating that the two rings are parallel and that the piperazine ring has a chair conformation just like other Schiff bases containing piperazine ring (Paital et al., 2009; Thirumurugan et al., 1998).

Experimental

A solution of N,N'-bis(N-aminopropyl)-piperazine (1.5 mmol in 10 ml anhydrous methanol) was added dropwise with constant stirring to the solution of paradimethylaminobenzaldehyde (3 mmol in 15 ml anhydrous methanol) at 327 K for 3 h. The resulting mixture was filtrated. After cooling, the filtrate was evaporated at ambient environment. Several days later, the yellow crystals suitable for X-ray analysis were collected and washed with small amount of methanol and dried at room temperature (yield 77%).

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H)= 1.5 Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for the others.

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C28H42N6F(000) = 504
Mr = 462.68Dx = 1.118 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 683 reflections
a = 17.599 (2) Åθ = 2.4–49.5°
b = 6.4146 (12) ŵ = 0.07 mm1
c = 12.6643 (18) ÅT = 298 K
β = 105.921 (3)°Platelet, yellow
V = 1374.8 (4) Å30.15 × 0.09 × 0.07 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer961 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
graphiteθmax = 25.0°, θmin = 2.4°
[var phi] and ω scansh = −20→20
6788 measured reflectionsk = −7→5
2416 independent reflectionsl = −15→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.298w = 1/[σ2(Fo2) + (0.0892P)2] where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max = 0.004
2416 reflectionsΔρmax = 0.24 e Å3
155 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9158 (3)−0.7316 (8)1.1684 (4)0.0687 (16)
N20.7447 (3)0.0908 (8)0.9057 (5)0.0667 (15)
N30.5629 (3)0.4652 (7)0.5991 (4)0.0590 (14)
C10.7396 (3)−0.0090 (10)0.9908 (6)0.0625 (17)
H10.70450.04081.02800.075*
C20.7852 (3)−0.1960 (9)1.0339 (5)0.0541 (16)
C30.8387 (3)−0.2867 (10)0.9837 (5)0.0598 (17)
H30.8455−0.22950.91940.072*
C40.8822 (3)−0.4629 (9)1.0298 (5)0.0563 (16)
H40.9183−0.51940.99610.068*
C50.8728 (3)−0.5567 (9)1.1258 (5)0.0539 (16)
C60.8190 (3)−0.4665 (9)1.1741 (5)0.0580 (16)
H60.8113−0.52551.23750.070*
C70.7766 (3)−0.2905 (10)1.1299 (5)0.0672 (18)
H70.7414−0.23331.16490.081*
C80.9031 (4)−0.8320 (10)1.2662 (5)0.083 (2)
H8A0.9375−0.95051.28560.124*
H8B0.8492−0.87671.25100.124*
H8C0.9145−0.73461.32600.124*
C90.9638 (4)−0.8399 (10)1.1115 (6)0.083 (2)
H9A0.9889−0.95631.15480.125*
H9B1.0033−0.74711.09930.125*
H9C0.9312−0.88901.04220.125*
C100.6968 (4)0.2755 (10)0.8724 (5)0.0704 (19)
H10A0.73090.39620.87840.084*
H10B0.66360.29620.92140.084*
C110.6451 (4)0.2571 (9)0.7554 (5)0.0665 (18)
H11A0.60950.13980.75000.080*
H11B0.67810.23110.70670.080*
C120.5971 (3)0.4555 (9)0.7193 (5)0.0637 (18)
H12A0.55480.46180.75470.076*
H12B0.63090.57580.74310.076*
C130.5345 (4)0.6762 (9)0.5644 (5)0.0710 (19)
H13A0.57780.77450.58730.085*
H13B0.49400.71520.59950.085*
C140.5005 (4)0.6860 (10)0.4399 (5)0.0678 (18)
H14A0.48030.82510.41890.081*
H14B0.54220.65860.40510.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.081 (4)0.071 (4)0.055 (4)0.017 (3)0.020 (3)0.013 (3)
N20.061 (3)0.074 (4)0.063 (4)0.015 (3)0.013 (3)0.011 (3)
N30.054 (3)0.060 (3)0.063 (4)0.007 (3)0.015 (3)0.012 (3)
C10.057 (4)0.069 (4)0.067 (5)0.005 (3)0.026 (3)−0.007 (4)
C20.052 (3)0.062 (4)0.049 (4)0.004 (3)0.015 (3)0.004 (3)
C30.062 (4)0.067 (4)0.052 (4)−0.007 (3)0.017 (3)0.003 (3)
C40.057 (4)0.062 (4)0.052 (4)0.003 (3)0.019 (3)0.001 (3)
C50.059 (4)0.057 (4)0.043 (4)−0.007 (3)0.009 (3)0.003 (3)
C60.070 (4)0.065 (4)0.043 (4)−0.005 (3)0.023 (3)0.000 (3)
C70.065 (4)0.073 (5)0.072 (5)−0.002 (4)0.033 (4)0.003 (4)
C80.098 (5)0.079 (5)0.067 (5)0.003 (4)0.014 (4)0.017 (4)
C90.097 (5)0.069 (5)0.086 (6)0.013 (4)0.027 (4)0.004 (4)
C100.061 (4)0.070 (5)0.075 (5)0.006 (3)0.012 (4)0.010 (4)
C110.069 (4)0.067 (4)0.068 (5)0.012 (3)0.026 (4)0.015 (4)
C120.062 (4)0.068 (4)0.063 (5)0.006 (3)0.020 (3)0.008 (3)
C130.075 (4)0.063 (4)0.072 (5)0.013 (4)0.017 (4)0.013 (3)
C140.068 (4)0.063 (4)0.073 (5)0.003 (4)0.021 (4)0.021 (4)

Geometric parameters (Å, °)

N1—C51.378 (7)C8—H8A0.9600
N1—C91.432 (7)C8—H8B0.9600
N1—C81.466 (7)C8—H8C0.9600
N2—C11.278 (7)C9—H9A0.9600
N2—C101.448 (7)C9—H9B0.9600
N3—C131.468 (7)C9—H9C0.9600
N3—C14i1.459 (7)C10—C111.516 (8)
N3—C121.477 (7)C10—H10A0.9700
C1—C21.462 (8)C10—H10B0.9700
C1—H10.9300C11—C121.527 (8)
C2—C71.404 (7)C11—H11A0.9700
C2—C31.400 (7)C11—H11B0.9700
C3—C41.399 (8)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.407 (7)C13—C141.527 (8)
C4—H40.9300C13—H13A0.9700
C5—C61.387 (8)C13—H13B0.9700
C6—C71.384 (8)C14—N3i1.459 (7)
C6—H60.9300C14—H14A0.9700
C7—H70.9300C14—H14B0.9700
C5—N1—C9122.3 (5)N1—C9—H9B109.5
C5—N1—C8119.7 (5)H9A—C9—H9B109.5
C9—N1—C8117.3 (5)N1—C9—H9C109.5
C1—N2—C10119.0 (5)H9A—C9—H9C109.5
C13—N3—C14i110.2 (5)H9B—C9—H9C109.5
C13—N3—C12110.9 (5)N2—C10—C11111.5 (5)
C14i—N3—C12112.2 (5)N2—C10—H10A109.3
N2—C1—C2124.6 (6)C11—C10—H10A109.3
N2—C1—H1117.7N2—C10—H10B109.3
C2—C1—H1117.7C11—C10—H10B109.3
C7—C2—C3117.4 (6)H10A—C10—H10B108.0
C7—C2—C1120.0 (6)C10—C11—C12111.2 (5)
C3—C2—C1122.7 (6)C10—C11—H11A109.4
C4—C3—C2120.4 (6)C12—C11—H11A109.4
C4—C3—H3119.8C10—C11—H11B109.4
C2—C3—H3119.8C12—C11—H11B109.4
C3—C4—C5121.7 (6)H11A—C11—H11B108.0
C3—C4—H4119.2N3—C12—C11112.3 (5)
C5—C4—H4119.2N3—C12—H12A109.1
N1—C5—C6122.3 (6)C11—C12—H12A109.1
N1—C5—C4120.3 (6)N3—C12—H12B109.1
C6—C5—C4117.4 (6)C11—C12—H12B109.1
C7—C6—C5121.3 (6)H12A—C12—H12B107.9
C7—C6—H6119.3N3—C13—C14110.6 (5)
C5—C6—H6119.3N3—C13—H13A109.5
C6—C7—C2121.9 (6)C14—C13—H13A109.5
C6—C7—H7119.1N3—C13—H13B109.5
C2—C7—H7119.1C14—C13—H13B109.5
N1—C8—H8A109.5H13A—C13—H13B108.1
N1—C8—H8B109.5N3i—C14—C13111.6 (5)
H8A—C8—H8B109.5N3i—C14—H14A109.3
N1—C8—H8C109.5C13—C14—H14A109.3
H8A—C8—H8C109.5N3i—C14—H14B109.3
H8B—C8—H8C109.5C13—C14—H14B109.3
N1—C9—H9A109.5H14A—C14—H14B108.0

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2643).

References

  • Basak, S., Sen, S., Marscher, C., Baumgartner, J., Batten, S. R., Turner, D. R. & Mitra, S. (2008). Polyhedron, 27, 1193–1200.
  • Jiang, G.-Q., Cai, J., Zhang, Y.-Q. & Zhang, Q.-J. (2008). Acta Cryst. E64, o1455. [PMC free article] [PubMed]
  • Paital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). Dalton Trans. pp. 1352–1362. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644–645.
  • Xu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306–3313.
  • Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83–o85.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography