PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3220.
Published online 2009 November 25. doi:  10.1107/S1600536809049733
PMCID: PMC2972072

Guanidinium quinoline-2-carboxyl­ate

Abstract

In the structure of the guanidinium salt of quinaldic acid, CH6N3 +·C10H6NO2 , the asymmetric unit contains two independent cations and anions having similar inter-species hydrogen-bonding environments, which include cyclic R 2 2(8), R 2 1(6) and R 1 2(5) associations. These and additional weak aromatic ring π–π inter­actions [minimum ring-centroid separation = 3.662 (2) Å] give a two-dimensional layered structure.

Related literature

For guanidinium salts of aromatic acids, see: Parthasarathi et al. (1982 [triangle]); Schürmann et al. (1998 [triangle]); Najafpour et al. (2007 [triangle]); Pereira Silva et al. (2007 [triangle]). For quinaldic acid structures, see: Dobrzyńska & Jerzykiewicz (2004 [triangle]); Smith et al. (2004 [triangle], 2007 [triangle], 2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3220-scheme1.jpg

Experimental

Crystal data

  • CH6N3 +·C10H6NO2
  • M r = 232.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3220-efi1.jpg
  • a = 7.4318 (3) Å
  • b = 42.2105 (18) Å
  • c = 7.3035 (4) Å
  • β = 94.045 (4)°
  • V = 2285.40 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 297 K
  • 0.35 × 0.20 × 0.18 mm

Data collection

  • Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.740, T max = 0.870
  • 10626 measured reflections
  • 3981 independent reflections
  • 2931 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.162
  • S = 1.04
  • 3981 reflections
  • 355 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049733/wn2367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049733/wn2367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology,

supplementary crystallographic information

Comment

The guanidinium salts of aromatic and heteroaromatic carboxylic acids have proved to be a particularly useful means of generating stable hydrogen-bonded supramolecular framework structures. Three-dimensional structures are most common, largely the result of the interactive efficiency of the symmetrical guanidinium cation in commonly forming cyclic R22(8) hydrogen-bonding associations with carboxylate-O acceptors. Among the known structures are the guanidinium salts with the aromatic monocarboxylic acids, 4-chloro-3-nitrobenzoic acid (a monohydrate) (Najafpour et al., 2007), and the anhydrous salts with benzoic acid (Pereira Silva et al., 2007), 4-nitrobenzoic acid (Schürmann et al., 1998), 3,5-dinitrobenzoic acid (Smith et al., 2007) and 4-amino-3,5,6-trichloropicolinic acid (Parthasarathi et al., 1982).

Our 1:1 stoichiometric reaction of quinoline-2-carboxylic acid (quinaldic acid) in 50% 2-propanol-water gave large chemically stable crystals of the title compound, anhydrous guanidinium quinoline-2-carboxylate, CH6N3+ C10H6NO2- and the structure is reported here. Quinaldic acid in the solid state exists as a zwitterionic hydrogen-bonded dimer (Dobrzyńska & Jerzykiewicz, 2004) and is commonly found in that form as an adduct species in some proton-transfer compounds where it acts as a Lewis base rather than an acid. Examples are the 1/1/1 quinolinium salt adducts with 5-sulfosalicylic acid (Smith et al., 2004), picrylsulfonic acid (Smith et al., 2008a) and 4,5-dichlorophthalic acid (Smith et al., 2008b).

In the structure of the title compound the asymmetric unit contains two guanidinium cations (C and D) and two quinoline-2-carboxylate anions (A and B) (Fig. 1). The H atom donors of the two cations form similar cyclic hydrogen-bonding interactions with carboxylate O and quinoline N acceptors (Table 1) (Fig. 2), both pairs having two guanidinium-N–H, N'–H'···O associations [graph set R21(6)] and one N–H, N'–H'···O,O' association [R22(8)]. In addition, each has an R12(5) guanidinium NH···N,Oquinoline-carboxyl association. A two-dimensional layered structure is generated (Fig. 3), in which some aromatic ring overlap down the c cell direction gives weak π–π interactions [minimum ring centroid separation,for the six-membered ring N1B–C5B, 3.662 (2) Å]. The quinoline-2-carboxylate cations are conformationally similar with only minor differences in the N1–C2–C21–O22 torsion angles [170.3 (3)° (A), 163.6 (3)° (B)].

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of quinoline-2-carboxylic acid and guanidine carbonate in 50 ml of 50% aqueous propan-2-ol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless prisms [m.p. 543–544 K].

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C—H = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the two guanidinium cations (C and D) and the two quinoline-2-carboxylate anions (A and B) in the asymmetric unit. Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn ...
Fig. 2.
The hydrogen-bonding extensions of the asymmetric unit, showing hydrogen-bonds as dashed lines. For symmetry codes, see Table 1.
Fig. 3.
The two-dimensional hydrogen-bonded layered structure, viewed down the c axial direction, showing also quinoline ring overlap. Non-interactive hydrogen atoms are omitted. For symmetry codes, see Table 1.

Crystal data

CH6N3+·C10H6NO2F(000) = 976
Mr = 232.25Dx = 1.350 Mg m3
Monoclinic, P21/cMelting point = 543–544 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4318 (3) ÅCell parameters from 4234 reflections
b = 42.2105 (18) Åθ = 2.9–28.8°
c = 7.3035 (4) ŵ = 0.10 mm1
β = 94.045 (4)°T = 297 K
V = 2285.40 (18) Å3Prism, colourless
Z = 80.35 × 0.20 × 0.18 mm

Data collection

Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer3981 independent reflections
Radiation source: Enhance (Mo) X-ray source2931 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.740, Tmax = 0.870k = −50→49
10626 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0614P)2 + 2.2259P] where P = (Fo2 + 2Fc2)/3
3981 reflections(Δ/σ)max = 0.003
355 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O21A0.8508 (4)0.09058 (6)0.2611 (3)0.0621 (10)
O22A0.5996 (3)0.07308 (6)0.1162 (4)0.0645 (10)
N1A0.9927 (3)0.03079 (6)0.2631 (3)0.0344 (8)
C2A0.8222 (4)0.03520 (7)0.2056 (4)0.0347 (9)
C3A0.7048 (4)0.01015 (8)0.1538 (4)0.0432 (11)
C4A0.7670 (5)−0.02006 (8)0.1610 (4)0.0470 (11)
C5A1.0237 (5)−0.05662 (8)0.2320 (5)0.0526 (14)
C6A1.1980 (6)−0.06067 (9)0.2937 (5)0.0607 (14)
C7A1.3053 (5)−0.03505 (10)0.3470 (5)0.0573 (14)
C8A1.2375 (4)−0.00486 (8)0.3367 (4)0.0463 (11)
C9A1.0562 (4)0.00047 (7)0.2721 (4)0.0350 (10)
C10A0.9469 (4)−0.02599 (7)0.2209 (4)0.0386 (10)
C21A0.7531 (5)0.06891 (8)0.1948 (4)0.0434 (11)
O21B0.2113 (4)0.16103 (6)0.7760 (4)0.0595 (9)
O22B0.4256 (3)0.17922 (6)0.6099 (3)0.0547 (9)
N1B0.0628 (3)0.22063 (6)0.7787 (3)0.0337 (8)
C2B0.2260 (4)0.21671 (7)0.7234 (4)0.0331 (9)
C3B0.3404 (4)0.24202 (7)0.6830 (4)0.0383 (10)
C4B0.2823 (4)0.27223 (7)0.7016 (4)0.0399 (10)
C5B0.0359 (5)0.30838 (8)0.7780 (4)0.0467 (11)
C6B−0.1343 (5)0.31222 (9)0.8310 (5)0.0521 (12)
C7B−0.2392 (5)0.28594 (9)0.8685 (5)0.0500 (11)
C8B−0.1739 (4)0.25609 (8)0.8528 (4)0.0417 (11)
C9B0.0024 (4)0.25108 (7)0.7961 (4)0.0326 (9)
C10B0.1082 (4)0.27776 (7)0.7584 (4)0.0360 (10)
C21B0.2913 (4)0.18309 (8)0.7021 (4)0.0389 (10)
N1C0.1537 (5)0.11364 (9)0.4833 (5)0.0598 (12)
N2C0.2735 (5)0.08075 (8)0.2766 (5)0.0671 (14)
N3C0.4496 (5)0.11943 (9)0.4200 (5)0.0622 (12)
C1C0.2924 (5)0.10473 (8)0.3933 (5)0.0506 (11)
N1D0.6118 (5)0.13337 (8)−0.0734 (5)0.0553 (11)
N2D0.9196 (5)0.13416 (8)−0.0311 (5)0.0500 (11)
N3D0.7754 (5)0.17077 (7)−0.2190 (4)0.0554 (11)
C1D0.7690 (5)0.14616 (7)−0.1083 (4)0.0415 (11)
H3A0.585200.014300.114900.0520*
H4A0.69050−0.036800.126200.0560*
H5A0.95370−0.074100.196600.0630*
H6A1.24640−0.081000.300400.0730*
H7A1.42460−0.038300.390200.0680*
H8A1.311100.012200.372400.0560*
H3B0.454600.238000.643900.0460*
H4B0.357100.289100.677100.0480*
H5B0.105300.326100.754500.0560*
H6B−0.181200.332500.842300.0630*
H7B−0.355500.288900.904700.0600*
H8B−0.245300.238800.879400.0500*
H11C0.165 (4)0.1267 (8)0.567 (5)0.070 (10)*
H12C0.046 (6)0.1036 (9)0.454 (5)0.066 (12)*
H21C0.376 (6)0.0750 (10)0.217 (6)0.079 (13)*
H22C0.173 (6)0.0684 (11)0.272 (6)0.084 (14)*
H31C0.448 (6)0.1394 (11)0.475 (6)0.089 (15)*
H32C0.540 (6)0.1136 (11)0.367 (6)0.081 (15)*
H11D0.611 (5)0.1156 (10)−0.014 (5)0.068 (13)*
H12D0.514 (6)0.1421 (11)−0.114 (7)0.091 (17)*
H21D1.022 (5)0.1409 (8)−0.055 (5)0.064 (10)*
H22D0.908 (6)0.1206 (11)0.060 (6)0.083 (15)*
H31D0.882 (5)0.1819 (9)−0.227 (5)0.060 (11)*
H32D0.670 (6)0.1793 (10)−0.273 (6)0.074 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O21A0.087 (2)0.0395 (15)0.0588 (15)0.0029 (13)−0.0028 (14)0.0009 (11)
O22A0.0422 (15)0.0608 (17)0.092 (2)0.0122 (12)0.0149 (14)0.0230 (14)
N1A0.0365 (15)0.0328 (14)0.0346 (13)−0.0010 (11)0.0068 (11)0.0000 (10)
C2A0.0352 (17)0.0373 (17)0.0327 (15)−0.0018 (13)0.0111 (13)0.0042 (12)
C3A0.0356 (18)0.051 (2)0.0428 (18)−0.0015 (15)0.0006 (14)0.0001 (15)
C4A0.053 (2)0.043 (2)0.0449 (19)−0.0100 (16)0.0020 (16)−0.0061 (15)
C5A0.076 (3)0.038 (2)0.0444 (19)0.0035 (18)0.0089 (18)−0.0019 (15)
C6A0.085 (3)0.048 (2)0.050 (2)0.021 (2)0.011 (2)0.0060 (17)
C7A0.055 (2)0.070 (3)0.047 (2)0.021 (2)0.0044 (17)0.0106 (18)
C8A0.044 (2)0.053 (2)0.0422 (18)0.0029 (16)0.0050 (15)0.0034 (15)
C9A0.0405 (18)0.0378 (18)0.0275 (15)0.0017 (14)0.0073 (13)0.0031 (12)
C10A0.052 (2)0.0339 (18)0.0306 (15)−0.0008 (14)0.0090 (14)−0.0004 (12)
C21A0.046 (2)0.044 (2)0.0421 (18)0.0062 (16)0.0173 (15)0.0097 (15)
O21B0.0687 (17)0.0414 (14)0.0712 (16)0.0055 (13)0.0246 (13)0.0069 (12)
O22B0.0368 (13)0.0508 (15)0.0783 (17)0.0036 (11)0.0159 (12)−0.0133 (12)
N1B0.0309 (14)0.0378 (15)0.0322 (13)0.0010 (11)0.0002 (10)−0.0030 (10)
C2B0.0286 (16)0.0401 (17)0.0304 (15)0.0018 (13)−0.0002 (12)−0.0051 (12)
C3B0.0292 (16)0.048 (2)0.0376 (16)−0.0003 (14)0.0027 (13)−0.0049 (14)
C4B0.0376 (18)0.0414 (19)0.0407 (17)−0.0082 (14)0.0023 (14)−0.0013 (13)
C5B0.055 (2)0.0376 (19)0.0469 (19)0.0029 (16)0.0004 (16)0.0021 (14)
C6B0.059 (2)0.044 (2)0.053 (2)0.0182 (18)0.0010 (17)−0.0025 (16)
C7B0.043 (2)0.061 (2)0.0462 (19)0.0124 (17)0.0039 (15)−0.0062 (16)
C8B0.0366 (18)0.048 (2)0.0406 (18)0.0015 (15)0.0027 (14)−0.0039 (14)
C9B0.0301 (16)0.0402 (18)0.0268 (14)0.0026 (13)−0.0032 (12)−0.0033 (12)
C10B0.0382 (17)0.0405 (18)0.0286 (15)0.0010 (14)−0.0028 (12)−0.0013 (12)
C21B0.0332 (17)0.0404 (19)0.0425 (17)0.0017 (14)−0.0007 (14)−0.0025 (14)
N1C0.060 (2)0.054 (2)0.068 (2)−0.0068 (18)0.0225 (18)−0.0130 (17)
N2C0.055 (2)0.052 (2)0.098 (3)−0.0159 (17)0.032 (2)−0.0300 (18)
N3C0.055 (2)0.050 (2)0.084 (2)−0.0109 (17)0.0209 (18)−0.0184 (17)
C1C0.056 (2)0.0367 (19)0.061 (2)−0.0033 (17)0.0166 (18)0.0032 (16)
N1D0.050 (2)0.0452 (19)0.071 (2)−0.0032 (16)0.0071 (16)0.0158 (16)
N2D0.047 (2)0.0478 (19)0.0550 (19)−0.0004 (16)0.0023 (15)0.0055 (15)
N3D0.047 (2)0.0462 (19)0.072 (2)−0.0081 (16)−0.0022 (16)0.0205 (15)
C1D0.046 (2)0.0344 (18)0.0445 (18)−0.0033 (15)0.0051 (15)−0.0031 (14)

Geometric parameters (Å, °)

O21A—C21A1.245 (4)C4A—C10A1.400 (5)
O22A—C21A1.253 (4)C5A—C6A1.352 (6)
O21B—C21B1.248 (4)C5A—C10A1.413 (5)
O22B—C21B1.253 (4)C6A—C7A1.383 (6)
N1A—C2A1.320 (4)C7A—C8A1.371 (5)
N1A—C9A1.364 (4)C8A—C9A1.414 (4)
N1B—C2B1.316 (4)C9A—C10A1.416 (4)
N1B—C9B1.370 (4)C3A—H3A0.9300
N1C—C1C1.316 (5)C4A—H4A0.9300
N2C—C1C1.324 (5)C5A—H5A0.9300
N3C—C1C1.325 (5)C6A—H6A0.9300
N1C—H11C0.82 (4)C7A—H7A0.9300
N1C—H12C0.92 (4)C8A—H8A0.9300
N2C—H21C0.94 (4)C2B—C21B1.511 (4)
N2C—H22C0.91 (4)C2B—C3B1.410 (4)
N3C—H32C0.84 (4)C3B—C4B1.356 (4)
N3C—H31C0.93 (5)C4B—C10B1.406 (4)
N1D—C1D1.328 (5)C5B—C10B1.411 (5)
N2D—C1D1.318 (5)C5B—C6B1.358 (5)
N3D—C1D1.319 (4)C6B—C7B1.394 (5)
N1D—H11D0.87 (4)C7B—C8B1.358 (5)
N1D—H12D0.85 (5)C8B—C9B1.418 (4)
N2D—H21D0.84 (4)C9B—C10B1.412 (4)
N2D—H22D0.89 (4)C3B—H3B0.9300
N3D—H31D0.93 (4)C4B—H4B0.9300
N3D—H32D0.93 (4)C5B—H5B0.9300
C2A—C21A1.513 (5)C6B—H6B0.9300
C2A—C3A1.406 (4)C7B—H7B0.9300
C3A—C4A1.356 (5)C8B—H8B0.9300
O21A···N1A2.735 (4)C10B···C2Bv3.455 (4)
O21A···N1Ci2.852 (5)C10B···C3Bv3.541 (4)
O21A···N2Ci3.163 (5)C21B···C5Bxi3.535 (4)
O21A···N2D2.890 (4)C1D···H6Ax3.0900
O21A···C1Ci3.408 (5)C2A···H22Ci2.97 (5)
O21B···N1C2.937 (5)C2B···H31Dii2.99 (4)
O21B···N2Dii2.899 (5)C3A···H3Axiii2.9900
O21B···N1B2.748 (4)C4B···H7Bi3.0600
O21B···N3Dii3.268 (5)C9A···H22Ci3.00 (5)
O22A···N3C3.216 (5)C9B···H31Dii3.06 (4)
O22A···N1D2.902 (4)C21A···H21C2.83 (4)
O22A···N2C2.784 (4)C21A···H32C2.82 (5)
O22B···N1Diii3.250 (4)C21A···H11D2.66 (4)
O22B···N3C2.891 (4)C21A···H22D2.69 (5)
O22B···N3Diii2.826 (4)C21B···H11C2.72 (3)
O21A···H12Ci2.03 (4)C21B···H31C2.79 (5)
O21A···H11D2.80 (4)C21B···H32Diii2.81 (4)
O21A···H22Ci2.57 (4)C21B···H12Diii2.69 (5)
O21A···H32C2.67 (5)H3A···O22A2.4800
O21A···H22D2.01 (5)H3A···C3Axiii2.9900
O21B···H21Dii2.11 (4)H3A···H3Axiii2.3600
O21B···H31Dii2.60 (4)H3B···H7Biv2.5800
O21B···H11C2.12 (4)H3B···O22B2.5000
O21B···H12Diii2.47 (5)H4A···H5A2.5400
O22A···H3A2.4800H4B···H5B2.5300
O22A···H32C2.57 (5)H5A···H4A2.5400
O22A···H11D2.04 (4)H5B···H4B2.5300
O22A···H21C1.87 (4)H5B···N2Dxii2.9400
O22B···H12Diii2.60 (5)H6A···C1Dx3.0900
O22B···H7Biv2.6500H7B···H3Bxii2.5800
O22B···H31C1.96 (5)H7B···C4Bvi3.0600
O22B···H32Diii1.95 (4)H7B···O22Bxii2.6500
O22B···H3B2.5000H11C···C21B2.72 (3)
N1A···O21A2.735 (4)H11C···O21B2.12 (4)
N1A···N2Ci2.964 (4)H11C···H31C2.32 (5)
N1B···O21B2.748 (4)H11D···H22D2.25 (6)
N1B···N3Dii3.000 (4)H11D···C21A2.66 (4)
N1B···C4Bv3.403 (4)H11D···O21A2.80 (4)
N1C···O21B2.937 (5)H11D···O22A2.04 (4)
N1C···O21Avi2.852 (5)H12C···H22C2.25 (6)
N1D···O22A2.902 (4)H12C···O21Avi2.03 (4)
N1D···O22Bvii3.250 (4)H12D···O21Bvii2.47 (5)
N2C···N1Avi2.964 (4)H12D···C21Bvii2.69 (5)
N2C···O21Avi3.163 (5)H12D···H32D2.31 (6)
N2C···O22A2.784 (4)H12D···O22Bvii2.60 (5)
N2D···C5Biv3.384 (5)H21C···C21A2.83 (4)
N2D···O21Bviii2.899 (5)H21C···H32C2.27 (6)
N2D···O21A2.890 (4)H21C···O22A1.87 (4)
N3C···O22B2.891 (4)H21D···O21Bviii2.11 (4)
N3C···O22A3.216 (5)H21D···H31D2.34 (5)
N3D···O22Bvii2.826 (4)H22C···C2Avi2.97 (5)
N3D···O21Bviii3.268 (5)H22C···C9Avi3.00 (5)
N3D···N1Bviii3.000 (4)H22C···H12C2.25 (6)
N1A···H22Ci2.08 (5)H22C···N1Avi2.08 (5)
N1B···H31Dii2.12 (4)H22C···O21Avi2.57 (4)
N2D···H5Biv2.9400H22D···O21A2.01 (5)
C1C···O21Avi3.408 (5)H22D···C21A2.69 (5)
C2A···C7Aix3.466 (5)H22D···H11D2.25 (6)
C2A···C5Ax3.586 (5)H31C···C21B2.79 (5)
C2B···C10Bxi3.455 (4)H31C···H11C2.32 (5)
C2B···C4Bv3.519 (4)H31C···O22B1.96 (5)
C3B···C4Bxi3.563 (4)H31D···H21D2.34 (5)
C3B···C10Bxi3.541 (4)H31D···O21Bviii2.60 (4)
C4B···C2Bxi3.519 (4)H31D···N1Bviii2.12 (4)
C4B···C3Bv3.563 (4)H31D···C9Bviii3.06 (4)
C4B···N1Bxi3.403 (4)H31D···C2Bviii2.99 (4)
C5A···C2Ax3.586 (5)H32C···C21A2.82 (5)
C5B···C21Bv3.535 (4)H32C···H21C2.27 (6)
C5B···N2Dxii3.384 (5)H32C···O22A2.57 (5)
C7A···C2Aix3.466 (5)H32C···O21A2.67 (5)
C8B···C9Bv3.419 (4)H32D···O22Bvii1.95 (4)
C9A···C9Aix3.489 (4)H32D···C21Bvii2.81 (4)
C9B···C8Bxi3.419 (4)H32D···H12D2.31 (6)
C2A—N1A—C9A118.0 (3)C6A—C5A—H5A120.00
C2B—N1B—C9B117.5 (3)C7A—C6A—H6A120.00
C1C—N1C—H11C121 (2)C5A—C6A—H6A119.00
C1C—N1C—H12C117 (3)C8A—C7A—H7A120.00
H11C—N1C—H12C122 (3)C6A—C7A—H7A120.00
C1C—N2C—H21C116 (3)C7A—C8A—H8A120.00
C1C—N2C—H22C121 (3)C9A—C8A—H8A120.00
H21C—N2C—H22C122 (4)N1B—C2B—C21B117.4 (3)
C1C—N3C—H31C117 (3)C3B—C2B—C21B119.2 (3)
C1C—N3C—H32C122 (3)N1B—C2B—C3B123.5 (3)
H31C—N3C—H32C120 (4)C2B—C3B—C4B119.4 (3)
C1D—N1D—H11D119 (2)C3B—C4B—C10B119.5 (3)
C1D—N1D—H12D120 (3)C6B—C5B—C10B120.5 (3)
H11D—N1D—H12D121 (4)C5B—C6B—C7B120.4 (3)
C1D—N2D—H22D116 (3)C6B—C7B—C8B120.9 (3)
H21D—N2D—H22D121 (4)C7B—C8B—C9B120.4 (3)
C1D—N2D—H21D122 (2)C8B—C9B—C10B118.5 (3)
C1D—N3D—H31D120 (2)N1B—C9B—C8B118.9 (3)
C1D—N3D—H32D120 (3)N1B—C9B—C10B122.7 (3)
H31D—N3D—H32D119 (4)C4B—C10B—C9B117.5 (3)
N1A—C2A—C21A117.7 (3)C5B—C10B—C9B119.3 (3)
N1A—C2A—C3A122.9 (3)C4B—C10B—C5B123.2 (3)
C3A—C2A—C21A119.4 (3)O21B—C21B—C2B119.3 (3)
C2A—C3A—C4A119.6 (3)O21B—C21B—O22B123.8 (3)
C3A—C4A—C10A119.7 (3)O22B—C21B—C2B116.8 (3)
C6A—C5A—C10A120.6 (3)C2B—C3B—H3B120.00
C5A—C6A—C7A121.0 (4)C4B—C3B—H3B120.00
C6A—C7A—C8A120.6 (3)C10B—C4B—H4B120.00
C7A—C8A—C9A120.3 (3)C3B—C4B—H4B120.00
N1A—C9A—C10A122.5 (3)C6B—C5B—H5B120.00
N1A—C9A—C8A118.9 (3)C10B—C5B—H5B120.00
C8A—C9A—C10A118.6 (3)C7B—C6B—H6B120.00
C5A—C10A—C9A119.0 (3)C5B—C6B—H6B120.00
C4A—C10A—C9A117.3 (3)C8B—C7B—H7B120.00
C4A—C10A—C5A123.7 (3)C6B—C7B—H7B120.00
O21A—C21A—C2A119.0 (3)C9B—C8B—H8B120.00
O21A—C21A—O22A124.2 (3)C7B—C8B—H8B120.00
O22A—C21A—C2A116.8 (3)N2C—C1C—N3C120.3 (4)
C2A—C3A—H3A120.00N1C—C1C—N2C119.3 (4)
C4A—C3A—H3A120.00N1C—C1C—N3C120.4 (3)
C3A—C4A—H4A120.00N2D—C1D—N3D119.9 (3)
C10A—C4A—H4A120.00N1D—C1D—N2D119.6 (3)
C10A—C5A—H5A120.00N1D—C1D—N3D120.5 (3)
C9A—N1A—C2A—C3A0.0 (4)N1A—C9A—C10A—C5A179.2 (3)
C9A—N1A—C2A—C21A−179.6 (2)C8A—C9A—C10A—C4A178.7 (3)
C2A—N1A—C9A—C8A−178.8 (3)C8A—C9A—C10A—C5A−1.5 (4)
C2A—N1A—C9A—C10A0.6 (4)N1A—C9A—C10A—C4A−0.6 (4)
C2B—N1B—C9B—C8B179.1 (3)N1B—C2B—C3B—C4B0.2 (5)
C2B—N1B—C9B—C10B−0.4 (4)C21B—C2B—C3B—C4B179.9 (3)
C9B—N1B—C2B—C3B0.4 (4)N1B—C2B—C21B—O21B−16.7 (4)
C9B—N1B—C2B—C21B−179.3 (2)N1B—C2B—C21B—O22B163.6 (3)
C3A—C2A—C21A—O21A171.5 (3)C3B—C2B—C21B—O21B163.6 (3)
N1A—C2A—C21A—O21A−8.9 (4)C3B—C2B—C21B—O22B−16.1 (4)
N1A—C2A—C21A—O22A170.3 (3)C2B—C3B—C4B—C10B−0.9 (4)
N1A—C2A—C3A—C4A−0.5 (5)C3B—C4B—C10B—C5B−178.8 (3)
C21A—C2A—C3A—C4A179.1 (3)C3B—C4B—C10B—C9B0.9 (4)
C3A—C2A—C21A—O22A−9.4 (4)C10B—C5B—C6B—C7B0.6 (5)
C2A—C3A—C4A—C10A0.4 (4)C6B—C5B—C10B—C4B179.1 (3)
C3A—C4A—C10A—C9A0.1 (4)C6B—C5B—C10B—C9B−0.6 (5)
C3A—C4A—C10A—C5A−179.7 (3)C5B—C6B—C7B—C8B−0.1 (5)
C6A—C5A—C10A—C4A−179.0 (3)C6B—C7B—C8B—C9B−0.6 (5)
C6A—C5A—C10A—C9A1.2 (5)C7B—C8B—C9B—N1B−178.9 (3)
C10A—C5A—C6A—C7A−0.1 (6)C7B—C8B—C9B—C10B0.6 (4)
C5A—C6A—C7A—C8A−0.6 (6)N1B—C9B—C10B—C4B−0.2 (4)
C6A—C7A—C8A—C9A0.3 (5)N1B—C9B—C10B—C5B179.5 (3)
C7A—C8A—C9A—N1A−179.9 (3)C8B—C9B—C10B—C4B−179.7 (3)
C7A—C8A—C9A—C10A0.8 (4)C8B—C9B—C10B—C5B0.0 (4)

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z+1; (iii) x, y, z+1; (iv) x+1, −y+1/2, z−1/2; (v) x, −y+1/2, z+1/2; (vi) x−1, y, z; (vii) x, y, z−1; (viii) x+1, y, z−1; (ix) −x+2, −y, −z+1; (x) −x+2, −y, −z; (xi) x, −y+1/2, z−1/2; (xii) x−1, −y+1/2, z+1/2; (xiii) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1C—H11C···O21B0.82 (4)2.12 (4)2.937 (5)176 (3)
N1C—H12C···O21Avi0.92 (4)2.03 (4)2.852 (5)149 (3)
N1D—H11D···O22A0.87 (4)2.04 (4)2.902 (4)177 (4)
N1D—H12D···O21Bvii0.85 (5)2.47 (5)3.312 (5)173 (4)
N2C—H21C···O22A0.94 (4)1.87 (4)2.784 (4)166 (4)
N2C—H22C···O21Avi0.91 (4)2.57 (4)3.163 (5)124 (4)
N2C—H22C···N1Avi0.91 (4)2.08 (5)2.964 (4)165 (4)
N2D—H21D···O21Bviii0.84 (4)2.11 (4)2.899 (5)155 (3)
N2D—H22D···O21A0.89 (4)2.01 (5)2.890 (4)173 (4)
N3C—H31C···O22B0.93 (5)1.96 (5)2.891 (4)173 (4)
N3C—H32C···O22A0.84 (4)2.57 (5)3.216 (5)135 (4)
N3D—H31D···O21Bviii0.93 (4)2.60 (4)3.268 (5)130 (3)
N3D—H31D···N1Bviii0.93 (4)2.12 (4)3.000 (4)159 (3)
N3D—H32D···O22Bvii0.93 (4)1.95 (4)2.826 (4)157 (4)

Symmetry codes: (vi) x−1, y, z; (vii) x, y, z−1; (viii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2367).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  • Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Najafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, o3727.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  • Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Kennard, C. H. L., Smith, G. & O’Reilly, E. J. (1982). Cryst. Struct. Commun. 11, 1519–1524.
  • Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, o2783.
  • Schürmann, D.-C., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 581–582.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687–o689.
  • Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o867–o868.
  • Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. E64, o132–o133.
  • Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o180–o183. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography