PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3070.
Published online 2009 November 14. doi:  10.1107/S1600536809047072
PMCID: PMC2972067

1-[3,5-Bis(trifluoro­meth­yl)phen­yl]-3-[(5-ethenyl-1-aza­bicyclo­[2.2.2]octan-2-yl)(6-methoxy­quinolin-4-yl)meth­yl]thio­urea–l-proline–methanol (1/1/1)1

Abstract

In the methanol solvate of the title 1:1 cocrystal, C29H28F6N4OS·C5H9NO2·CH4O, the l-proline mol­ecule exists as a zwitterion. In the crystal, the disubstituted thio­urea, l-proline and methanol mol­ecules are linked by N—H(...)O and N—H(...)N hydrogen bonds, forming a two-dimensional array in the ab plane.

Related literature

For background to pre-catalyst mol­ecules for the Michael addition of acetone to trans-β-nitro­styrene, see: Mandal & Zhao (2008 [triangle]). For a related structure, see: Muramulla et al. (2009 [triangle]). For discussion on the definition of a co-crystal, see: Zukerman-Schpector & Tiekink (2008 [triangle]). For the synthesis, see: Vakulya et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3070-scheme1.jpg

Experimental

Crystal data

  • C29H28F6N4OS·C5H9NO2·CH4O
  • M r = 741.79
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3070-efi1.jpg
  • a = 11.597 (3) Å
  • b = 13.044 (4) Å
  • c = 23.907 (7) Å
  • V = 3616.4 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 98 K
  • 0.28 × 0.25 × 0.05 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.722, T max = 1.000
  • 26093 measured reflections
  • 8250 independent reflections
  • 7519 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.149
  • S = 1.06
  • 8250 reflections
  • 471 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3638 Friedel pairs
  • Flack parameter: −0.03 (10)

Data collection: CrystalClear (Rigaku/MSC 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047072/hb5216sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047072/hb5216Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CGZ thanks the National Science Foundation (grant No. CHE-0909954) for financial support of this project.

supplementary crystallographic information

Comment

The title co-crystal (Zukerman-Schpector & Tiekink, 2008), (I), has been evaluated as a pre-catalyst for the Michael addition of acetone to trans-β-nitrostyrene (Mandal & Zhao, 2008; Muramulla et al., 2009). The combination of quinidine thiourea and L-proline is activating both the nucleophile and electrophile of the Michael reactions. The asymmetric Michael addition of acidic carbon pronucleophiles to nitroolefins is an important carbon-carbon bond forming reaction that provides access to synthetically useful enantioenriched nitroalkanes.

The absolute structure of the co-crystal, isolated as a methanol solvate, (I), has been determined, Figs 1 and 2, and reveals the chirality at the N4, C10, C21, C23, C24 and C30 atoms of the disubstituted thiourea molecule to be S, R, R, R, S and S, respectively. The L-proline molecule exists as a zwitterion, a conclusion confirmed by the equality of the C35–O2 (1.257 (3) Å) and C35–O3 distances (1.250 (4) Å), and by the pattern of hydrogen bonding interactions involving both ammonium-H atoms. The proline ring conformation is an envelope on atom C(32).

In the crystal structure, molecules are connected into a supramolecular chain along the a axis which, in turn, are connected into layers in the ab plane, Table 1. Each N–H atom of the disubstituted urea molecule is hydrogen bonded to a carboxylate-O atom. One of the ammonium-H atoms of the proline molecule links a neighbouring molecule by forming an N5–H5a···N4 hydrogen bond with the nitrogen atom of the dabco residue; the H5a atom also forms a weak N–H···O contact with a carboxylate-O3 atom to provide extra stability to the chain. The second ammonium-H forms a N–H···O hydrogen bond with the solvent methanol molecule. As shown in Fig. 3, the hydrogen bonding scheme described thus far leads to the formation of a supramolecular chain. The pyridine-N3 atoms are directed to the periphery of this chain and these hydrogen bond with the methanol molecule to form links between chains to generate a 2-D array, Fig. 4.

Experimental

Compound (I) was prepared from the reaction of quinidine thiourea (30 mg, 0.05 mmol), prepared using a literature procedure (Vakulya et al., 2005), and L-proline (Sigma Aldrich; 0.05 mmol) in a 1:1 ratio in methanol (2 ml). The vial was left uncorked and kept in a beaker half filled with pentane sealed with parafilm. After 1 day, crystals were isolated.

Refinement

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl-C). In the absence of significant anomalous scattering effects, 1951 Friedel pairs were averaged in the final refinement. The absolute configuration was determined on the basis of the known configuration of L-proline starting material.

Figures

Fig. 1.
Molecular structure of the disubstituted urea molecule in (I), showing displacement ellipsoids at the 70% probability level.
Fig. 2.
Molecular structure of zwitterionic L-proline, showing displacement ellipsoids at the 70% probability level.
Fig. 3.
Supramolecular chain along the a axis in (I) mediated by N–H···O (orange dashed lines) and N–H···N hydrogen bonds (blue dashed lines).
Fig. 4.
2-D array in the ab plane in (I) mediated by N–H···O (orange dashed lines) and N–H···N hydrogen bonds (blue dashed lines).

Crystal data

C29H28F6N4OS·C5H9NO2·CH4OF(000) = 1552
Mr = 741.79Dx = 1.362 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16196 reflections
a = 11.597 (3) Åθ = 2.3–40.2°
b = 13.044 (4) ŵ = 0.17 mm1
c = 23.907 (7) ÅT = 98 K
V = 3616.4 (18) Å3Plate, colourless
Z = 40.28 × 0.25 × 0.05 mm

Data collection

Rigaku AFC12K/SATURN724 diffractometer8250 independent reflections
Radiation source: fine-focus sealed tube7519 reflections with I > 2σ(I)
graphiteRint = 0.059
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −12→15
Tmin = 0.722, Tmax = 1.000k = −16→16
26093 measured reflectionsl = −31→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.149w = 1/[σ2(Fo2) + (0.0632P)2 + 2.0147P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8250 reflectionsΔρmax = 0.44 e Å3
471 parametersΔρmin = −0.27 e Å3
3 restraintsAbsolute structure: Flack (1983), 3638 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.20467 (6)1.01378 (6)0.06774 (3)0.03013 (16)
F1−0.27893 (18)0.9872 (2)0.24180 (9)0.0572 (6)
F2−0.16591 (19)1.00733 (17)0.31179 (9)0.0499 (5)
F3−0.23783 (18)0.86002 (16)0.29538 (10)0.0489 (5)
F40.2087 (2)0.8036 (2)0.30422 (9)0.0617 (7)
F50.2224 (2)0.71239 (17)0.22931 (13)0.0701 (8)
F60.30477 (17)0.85610 (18)0.23501 (10)0.0513 (6)
O10.52077 (19)1.13957 (19)−0.08112 (11)0.0406 (6)
N1−0.0075 (2)0.9329 (2)0.08569 (10)0.0266 (5)
H1N−0.07830.92260.07370.032*
N20.0423 (2)0.95532 (18)−0.00465 (10)0.0244 (5)
H2N−0.02320.9231−0.01060.029*
N30.0920 (3)1.3256 (2)−0.06678 (12)0.0354 (6)
N40.0730 (2)0.83257 (18)−0.10719 (10)0.0251 (5)
C10.0756 (2)0.9653 (2)0.04910 (12)0.0252 (5)
C20.0023 (3)0.9169 (2)0.14352 (12)0.0262 (6)
C3−0.0951 (3)0.9368 (2)0.17688 (12)0.0264 (6)
H3−0.16360.96280.16040.032*
C4−0.0906 (3)0.9185 (2)0.23392 (12)0.0277 (6)
C50.0068 (3)0.8775 (2)0.25935 (12)0.0274 (6)
H50.00870.86490.29850.033*
C60.1016 (3)0.8556 (2)0.22551 (12)0.0267 (6)
C70.1005 (3)0.8754 (2)0.16783 (12)0.0273 (6)
H70.16630.86060.14560.033*
C8−0.1931 (3)0.9433 (2)0.27009 (13)0.0326 (6)
C90.2074 (3)0.8054 (2)0.24908 (12)0.0314 (6)
C100.1097 (2)0.9926 (2)−0.05211 (11)0.0240 (5)
H100.19140.9693−0.04810.029*
C110.1065 (3)1.1100 (2)−0.05523 (11)0.0268 (6)
C120.0038 (3)1.1606 (2)−0.05184 (13)0.0317 (6)
H12−0.06521.1233−0.04510.038*
C13−0.0004 (3)1.2689 (2)−0.05832 (14)0.0358 (7)
H13−0.07321.3020−0.05640.043*
C140.1968 (3)1.2774 (2)−0.06935 (12)0.0303 (6)
C150.2093 (3)1.1689 (2)−0.06446 (12)0.0272 (5)
C160.3214 (3)1.1273 (2)−0.06837 (13)0.0291 (6)
H160.33151.0553−0.06500.035*
C170.4170 (3)1.1892 (2)−0.07707 (13)0.0331 (7)
C180.4039 (3)1.2961 (2)−0.08108 (13)0.0367 (7)
H180.46961.3385−0.08630.044*
C190.2961 (3)1.3391 (2)−0.07744 (13)0.0353 (7)
H190.28791.4114−0.08040.042*
C200.6235 (3)1.2008 (3)−0.08248 (16)0.0441 (9)
H20A0.62251.2446−0.11580.066*
H20B0.69121.1560−0.08370.066*
H20C0.62691.2438−0.04890.066*
C210.0576 (3)0.9460 (2)−0.10557 (11)0.0253 (5)
H21−0.02720.9595−0.10440.030*
C220.1037 (3)0.9946 (2)−0.16008 (12)0.0316 (6)
H22A0.05181.0504−0.17250.038*
H22B0.18141.0238−0.15380.038*
C230.1093 (3)0.9104 (2)−0.20482 (12)0.0296 (6)
H230.12270.9413−0.24260.035*
C240.2072 (3)0.8353 (2)−0.19002 (12)0.0309 (6)
H240.19660.7716−0.21270.037*
C250.1918 (3)0.8074 (2)−0.12748 (12)0.0287 (6)
H25A0.20630.7332−0.12230.034*
H25B0.24910.8454−0.10490.034*
C26−0.0115 (3)0.7913 (2)−0.14802 (12)0.0286 (6)
H26A−0.09040.7976−0.13250.034*
H26B0.00420.7177−0.15450.034*
C27−0.0043 (3)0.8501 (2)−0.20430 (12)0.0298 (6)
H27A−0.00640.8013−0.23600.036*
H27B−0.07050.8976−0.20800.036*
C280.3260 (3)0.8790 (4)−0.20272 (16)0.0503 (10)
H280.36310.9173−0.17410.060*
C290.3799 (4)0.8677 (3)−0.2495 (2)0.0744 (16)
H29A0.34550.8298−0.27910.089*
H29B0.45410.8972−0.25440.089*
O20.27276 (18)0.59342 (16)−0.04507 (9)0.0308 (5)
O30.3580 (2)0.67889 (19)0.02523 (10)0.0397 (6)
N50.0627 (2)0.66700 (18)−0.02563 (10)0.0251 (5)
H5A0.03210.7254−0.04120.030*
H5B0.09290.6274−0.05390.030*
C300.1558 (2)0.6948 (2)0.01543 (12)0.0254 (6)
H300.16050.77100.01950.030*
C310.1171 (3)0.6463 (3)0.07085 (13)0.0367 (7)
H31A0.15100.57720.07560.044*
H31B0.13960.68960.10300.044*
C32−0.0125 (3)0.6405 (3)0.06533 (16)0.0436 (8)
H32A−0.04860.70780.07280.052*
H32B−0.04520.58890.09130.052*
C33−0.0294 (3)0.6086 (3)0.00486 (15)0.0400 (8)
H33A−0.01900.53370.00030.048*
H33B−0.10710.6279−0.00870.048*
C340.2729 (3)0.6519 (2)−0.00328 (12)0.0274 (6)
O40.0694 (2)0.52089 (17)0.88533 (10)0.0431 (6)
H4O0.08700.46410.89950.065*
C35−0.0103 (3)0.4973 (3)0.84173 (15)0.0406 (7)
H36A−0.08920.50290.85610.061*
H36B0.00340.42730.82840.061*
H36C0.00020.54570.81080.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0295 (3)0.0384 (4)0.0225 (3)−0.0023 (3)−0.0030 (3)0.0013 (3)
F10.0466 (11)0.0944 (18)0.0307 (10)0.0325 (13)0.0052 (9)0.0051 (11)
F20.0609 (13)0.0517 (12)0.0370 (11)0.0014 (10)0.0119 (10)−0.0207 (10)
F30.0517 (12)0.0437 (11)0.0512 (13)−0.0029 (9)0.0233 (11)0.0025 (10)
F40.0498 (12)0.108 (2)0.0278 (10)0.0225 (14)−0.0036 (10)0.0171 (12)
F50.0691 (16)0.0384 (12)0.103 (2)0.0207 (11)−0.0424 (16)−0.0196 (13)
F60.0359 (10)0.0605 (14)0.0576 (14)−0.0024 (10)−0.0059 (10)0.0194 (11)
O10.0327 (11)0.0404 (13)0.0486 (15)−0.0101 (10)0.0050 (11)−0.0062 (11)
N10.0281 (11)0.0337 (13)0.0180 (11)−0.0001 (10)−0.0024 (10)0.0006 (9)
N20.0277 (11)0.0269 (12)0.0185 (11)−0.0027 (9)−0.0002 (9)0.0019 (9)
N30.0502 (16)0.0284 (12)0.0277 (13)0.0041 (11)−0.0036 (13)−0.0010 (11)
N40.0308 (12)0.0245 (11)0.0199 (11)−0.0001 (9)−0.0005 (10)−0.0007 (9)
C10.0322 (14)0.0230 (13)0.0206 (12)0.0027 (11)0.0011 (11)0.0000 (10)
C20.0342 (14)0.0238 (13)0.0205 (13)−0.0004 (11)0.0010 (12)−0.0031 (10)
C30.0312 (14)0.0264 (13)0.0215 (13)0.0022 (11)−0.0018 (11)0.0007 (10)
C40.0336 (14)0.0270 (13)0.0226 (13)0.0027 (12)0.0029 (12)−0.0025 (11)
C50.0360 (15)0.0276 (13)0.0188 (13)0.0021 (12)0.0002 (12)0.0006 (10)
C60.0327 (14)0.0271 (14)0.0204 (13)0.0004 (12)−0.0019 (12)0.0006 (10)
C70.0295 (14)0.0299 (14)0.0227 (13)0.0036 (12)0.0024 (11)−0.0012 (11)
C80.0396 (16)0.0355 (15)0.0228 (14)0.0050 (13)0.0025 (13)−0.0006 (12)
C90.0345 (15)0.0348 (15)0.0250 (14)0.0054 (13)−0.0028 (13)0.0015 (11)
C100.0298 (13)0.0240 (13)0.0181 (12)−0.0004 (11)0.0001 (10)0.0020 (10)
C110.0381 (15)0.0252 (13)0.0171 (13)0.0017 (11)−0.0005 (12)−0.0009 (10)
C120.0375 (15)0.0311 (15)0.0266 (14)0.0014 (13)−0.0012 (13)0.0003 (11)
C130.0458 (18)0.0315 (15)0.0302 (16)0.0088 (14)−0.0041 (15)−0.0028 (12)
C140.0432 (16)0.0253 (13)0.0224 (13)−0.0021 (12)−0.0013 (13)0.0007 (11)
C150.0395 (15)0.0251 (13)0.0171 (12)−0.0025 (12)−0.0018 (12)−0.0010 (10)
C160.0378 (15)0.0274 (13)0.0220 (13)−0.0024 (11)−0.0002 (12)−0.0027 (11)
C170.0418 (17)0.0343 (16)0.0233 (15)−0.0095 (13)−0.0005 (13)−0.0033 (11)
C180.0502 (19)0.0310 (16)0.0291 (16)−0.0145 (14)−0.0032 (14)−0.0004 (12)
C190.0545 (18)0.0221 (13)0.0293 (16)−0.0095 (14)0.0004 (15)0.0007 (11)
C200.0378 (17)0.052 (2)0.043 (2)−0.0150 (16)0.0059 (15)−0.0086 (16)
C210.0319 (14)0.0237 (13)0.0202 (12)−0.0012 (11)−0.0023 (11)0.0025 (10)
C220.0472 (17)0.0266 (14)0.0209 (13)−0.0050 (13)−0.0010 (12)0.0037 (11)
C230.0342 (15)0.0331 (15)0.0214 (13)−0.0057 (12)−0.0027 (12)0.0029 (11)
C240.0295 (14)0.0423 (16)0.0210 (13)0.0002 (13)0.0020 (12)−0.0027 (12)
C250.0321 (15)0.0326 (15)0.0213 (13)0.0047 (12)0.0009 (11)0.0017 (11)
C260.0330 (15)0.0309 (14)0.0217 (13)−0.0074 (12)0.0004 (12)−0.0019 (11)
C270.0344 (14)0.0343 (15)0.0207 (13)−0.0027 (12)−0.0036 (12)0.0001 (11)
C280.0372 (18)0.087 (3)0.0270 (17)−0.0125 (18)0.0021 (14)0.0054 (18)
C290.073 (3)0.051 (2)0.098 (4)−0.024 (2)0.049 (3)−0.013 (3)
O20.0304 (11)0.0346 (11)0.0275 (10)−0.0001 (9)0.0004 (9)−0.0076 (8)
O30.0342 (12)0.0472 (14)0.0376 (13)0.0069 (10)−0.0082 (10)−0.0150 (11)
N50.0296 (12)0.0230 (11)0.0227 (11)0.0038 (9)−0.0034 (10)−0.0015 (9)
C300.0287 (14)0.0256 (13)0.0220 (14)−0.0002 (11)−0.0039 (11)−0.0001 (10)
C310.0424 (17)0.0456 (18)0.0221 (14)0.0013 (14)0.0009 (14)0.0018 (13)
C320.0428 (18)0.0484 (19)0.0396 (19)−0.0055 (15)0.0124 (17)−0.0022 (16)
C330.0317 (16)0.0484 (19)0.0400 (19)−0.0103 (14)0.0109 (14)−0.0094 (15)
C340.0336 (15)0.0263 (14)0.0222 (13)0.0029 (11)−0.0019 (12)0.0001 (10)
O40.0703 (16)0.0265 (11)0.0324 (12)0.0038 (11)−0.0218 (12)−0.0040 (9)
C350.0451 (18)0.0412 (18)0.0354 (17)0.0002 (15)−0.0088 (15)−0.0022 (14)

Geometric parameters (Å, °)

S1—C11.685 (3)C20—H20A0.9800
F1—C81.333 (4)C20—H20B0.9800
F2—C81.338 (4)C20—H20C0.9800
F3—C81.348 (4)C21—C221.545 (4)
F4—C91.319 (4)C21—H211.0000
F5—C91.314 (4)C22—C231.534 (4)
F6—C91.351 (4)C22—H22A0.9900
O1—C171.370 (4)C22—H22B0.9900
O1—C201.435 (4)C23—C271.535 (4)
N1—C11.369 (4)C23—C241.541 (4)
N1—C21.403 (4)C23—H231.0000
N1—H1N0.8799C24—C281.521 (4)
N2—C11.348 (4)C24—C251.549 (4)
N2—C101.461 (3)C24—H241.0000
N2—H2N0.8799C25—H25A0.9900
N3—C131.317 (4)C25—H25B0.9900
N3—C141.370 (4)C26—C271.551 (4)
N4—C261.484 (4)C26—H26A0.9900
N4—C211.491 (4)C26—H26B0.9900
N4—C251.497 (4)C27—H27A0.9900
C2—C71.389 (4)C27—H27B0.9900
C2—C31.406 (4)C28—C291.290 (6)
C3—C41.385 (4)C28—H280.9500
C3—H30.9500C29—H29A0.9500
C4—C51.389 (4)C29—H29B0.9500
C4—C81.505 (4)O2—C341.257 (3)
C5—C61.395 (4)O3—C341.250 (4)
C5—H50.9500N5—C331.501 (4)
C6—C71.403 (4)N5—C301.504 (4)
C6—C91.500 (4)N5—H5A0.9200
C7—H70.9500N5—H5B0.9200
C10—C111.533 (4)C30—C341.535 (4)
C10—C211.538 (4)C30—C311.535 (4)
C10—H101.0000C30—H301.0000
C11—C121.364 (4)C31—C321.511 (5)
C11—C151.436 (4)C31—H31A0.9900
C12—C131.423 (4)C31—H31B0.9900
C12—H120.9500C32—C331.517 (5)
C13—H130.9500C32—H32A0.9900
C14—C191.418 (4)C32—H32B0.9900
C14—C151.427 (4)C33—H33A0.9900
C15—C161.411 (4)C33—H33B0.9900
C16—C171.387 (4)O4—C351.426 (4)
C16—H160.9500O4—H4O0.8400
C17—C181.406 (5)C35—H36A0.9800
C18—C191.373 (5)C35—H36B0.9800
C18—H180.9500C35—H36C0.9800
C19—H190.9500
C17—O1—C20117.9 (3)N4—C21—H21107.0
C1—N1—C2128.2 (3)C10—C21—H21107.0
C1—N1—H1N119.7C22—C21—H21107.0
C2—N1—H1N112.1C23—C22—C21108.0 (2)
C1—N2—C10123.7 (2)C23—C22—H22A110.1
C1—N2—H2N116.5C21—C22—H22A110.1
C10—N2—H2N119.7C23—C22—H22B110.1
C13—N3—C14118.1 (3)C21—C22—H22B110.1
C26—N4—C21107.4 (2)H22A—C22—H22B108.4
C26—N4—C25108.4 (2)C22—C23—C27109.0 (2)
C21—N4—C25109.7 (2)C22—C23—C24109.0 (2)
N2—C1—N1112.2 (2)C27—C23—C24107.7 (2)
N2—C1—S1122.9 (2)C22—C23—H23110.3
N1—C1—S1124.9 (2)C27—C23—H23110.3
C7—C2—N1122.5 (3)C24—C23—H23110.3
C7—C2—C3119.5 (3)C28—C24—C23112.6 (3)
N1—C2—C3117.8 (3)C28—C24—C25112.7 (3)
C4—C3—C2119.8 (3)C23—C24—C25106.7 (2)
C4—C3—H3120.1C28—C24—H24108.3
C2—C3—H3120.1C23—C24—H24108.3
C3—C4—C5121.8 (3)C25—C24—H24108.3
C3—C4—C8119.9 (3)N4—C25—C24111.5 (2)
C5—C4—C8118.2 (3)N4—C25—H25A109.3
C4—C5—C6117.8 (3)C24—C25—H25A109.3
C4—C5—H5121.1N4—C25—H25B109.3
C6—C5—H5121.1C24—C25—H25B109.3
C5—C6—C7121.6 (3)H25A—C25—H25B108.0
C5—C6—C9121.1 (3)N4—C26—C27110.8 (2)
C7—C6—C9117.2 (3)N4—C26—H26A109.5
C2—C7—C6119.4 (3)C27—C26—H26A109.5
C2—C7—H7120.3N4—C26—H26B109.5
C6—C7—H7120.3C27—C26—H26B109.5
F1—C8—F2106.6 (3)H26A—C26—H26B108.1
F1—C8—F3106.6 (3)C23—C27—C26107.9 (2)
F2—C8—F3105.1 (3)C23—C27—H27A110.1
F1—C8—C4113.0 (3)C26—C27—H27A110.1
F2—C8—C4112.1 (3)C23—C27—H27B110.1
F3—C8—C4112.8 (3)C26—C27—H27B110.1
F5—C9—F4110.0 (3)H27A—C27—H27B108.4
F5—C9—F6104.6 (3)C29—C28—C24124.7 (4)
F4—C9—F6104.4 (3)C29—C28—H28117.6
F5—C9—C6112.1 (3)C24—C28—H28117.6
F4—C9—C6113.1 (3)C28—C29—H29A120.0
F6—C9—C6112.1 (2)C28—C29—H29B120.0
N2—C10—C11111.0 (2)H29A—C29—H29B120.0
N2—C10—C21107.7 (2)C33—N5—C30108.4 (2)
C11—C10—C21110.2 (2)C33—N5—H5A110.0
N2—C10—H10109.3C30—N5—H5A110.0
C11—C10—H10109.3C33—N5—H5B110.0
C21—C10—H10109.3C30—N5—H5B110.0
C12—C11—C15118.4 (3)H5A—N5—H5B108.4
C12—C11—C10120.1 (3)N5—C30—C34110.9 (2)
C15—C11—C10121.5 (3)N5—C30—C31104.7 (2)
C11—C12—C13120.2 (3)C34—C30—C31111.1 (2)
C11—C12—H12119.9N5—C30—H30110.0
C13—C12—H12119.9C34—C30—H30110.0
N3—C13—C12123.1 (3)C31—C30—H30110.0
N3—C13—H13118.4C32—C31—C30103.7 (3)
C12—C13—H13118.4C32—C31—H31A111.0
N3—C14—C19117.8 (3)C30—C31—H31A111.0
N3—C14—C15122.8 (3)C32—C31—H31B111.0
C19—C14—C15119.4 (3)C30—C31—H31B111.0
C16—C15—C14118.0 (3)H31A—C31—H31B109.0
C16—C15—C11124.7 (3)C31—C32—C33103.0 (3)
C14—C15—C11117.3 (3)C31—C32—H32A111.2
C17—C16—C15121.5 (3)C33—C32—H32A111.2
C17—C16—H16119.3C31—C32—H32B111.2
C15—C16—H16119.3C33—C32—H32B111.2
O1—C17—C16116.0 (3)H32A—C32—H32B109.1
O1—C17—C18123.9 (3)N5—C33—C32103.4 (3)
C16—C17—C18120.1 (3)N5—C33—H33A111.1
C19—C18—C17119.9 (3)C32—C33—H33A111.1
C19—C18—H18120.0N5—C33—H33B111.1
C17—C18—H18120.0C32—C33—H33B111.1
C18—C19—C14121.1 (3)H33A—C33—H33B109.0
C18—C19—H19119.5O3—C34—O2127.2 (3)
C14—C19—H19119.5O3—C34—C30115.9 (2)
O1—C20—H20A109.5O2—C34—C30116.9 (3)
O1—C20—H20B109.5C35—O4—H4O105.2
H20A—C20—H20B109.5O4—C35—H36A109.5
O1—C20—H20C109.5O4—C35—H36B109.5
H20A—C20—H20C109.5H36A—C35—H36B109.5
H20B—C20—H20C109.5O4—C35—H36C109.5
N4—C21—C10111.5 (2)H36A—C35—H36C109.5
N4—C21—C22110.1 (2)H36B—C35—H36C109.5
C10—C21—C22113.8 (2)
C10—N2—C1—N1174.2 (2)C14—C15—C16—C17−0.4 (4)
C10—N2—C1—S1−5.1 (4)C11—C15—C16—C17−179.7 (3)
C2—N1—C1—N2169.3 (3)C20—O1—C17—C16−171.7 (3)
C2—N1—C1—S1−11.5 (4)C20—O1—C17—C188.2 (5)
C1—N1—C2—C7−38.0 (4)C15—C16—C17—O1−178.8 (3)
C1—N1—C2—C3146.9 (3)C15—C16—C17—C181.3 (5)
C7—C2—C3—C42.4 (4)O1—C17—C18—C19178.9 (3)
N1—C2—C3—C4177.6 (3)C16—C17—C18—C19−1.2 (5)
C2—C3—C4—C5−2.1 (4)C17—C18—C19—C140.3 (5)
C2—C3—C4—C8177.8 (3)N3—C14—C19—C18−179.3 (3)
C3—C4—C5—C60.4 (4)C15—C14—C19—C180.5 (5)
C8—C4—C5—C6−179.4 (3)C26—N4—C21—C10160.9 (2)
C4—C5—C6—C71.0 (4)C25—N4—C21—C10−81.6 (3)
C4—C5—C6—C9−176.3 (3)C26—N4—C21—C22−71.8 (3)
N1—C2—C7—C6−176.0 (3)C25—N4—C21—C2245.7 (3)
C3—C2—C7—C6−1.0 (4)N2—C10—C21—N4−66.2 (3)
C5—C6—C7—C2−0.7 (4)C11—C10—C21—N4172.7 (2)
C9—C6—C7—C2176.7 (3)N2—C10—C21—C22168.5 (2)
C3—C4—C8—F1−3.3 (4)C11—C10—C21—C2247.4 (3)
C5—C4—C8—F1176.6 (3)N4—C21—C22—C2319.9 (3)
C3—C4—C8—F2−123.8 (3)C10—C21—C22—C23145.9 (3)
C5—C4—C8—F256.1 (4)C21—C22—C23—C2746.9 (3)
C3—C4—C8—F3117.8 (3)C21—C22—C23—C24−70.5 (3)
C5—C4—C8—F3−62.3 (4)C22—C23—C24—C28−75.7 (3)
C5—C6—C9—F5112.8 (3)C27—C23—C24—C28166.2 (3)
C7—C6—C9—F5−64.5 (4)C22—C23—C24—C2548.3 (3)
C5—C6—C9—F4−12.2 (4)C27—C23—C24—C25−69.8 (3)
C7—C6—C9—F4170.4 (3)C26—N4—C25—C2448.2 (3)
C5—C6—C9—F6−129.9 (3)C21—N4—C25—C24−68.7 (3)
C7—C6—C9—F652.7 (4)C28—C24—C25—N4141.8 (3)
C1—N2—C10—C11−71.9 (3)C23—C24—C25—N417.8 (3)
C1—N2—C10—C21167.5 (3)C21—N4—C26—C2750.5 (3)
N2—C10—C11—C12−48.9 (4)C25—N4—C26—C27−67.9 (3)
C21—C10—C11—C1270.2 (3)C22—C23—C27—C26−66.9 (3)
N2—C10—C11—C15134.2 (3)C24—C23—C27—C2651.2 (3)
C21—C10—C11—C15−106.7 (3)N4—C26—C27—C2315.6 (3)
C15—C11—C12—C131.0 (4)C23—C24—C28—C29−90.9 (5)
C10—C11—C12—C13−176.0 (3)C25—C24—C28—C29148.4 (5)
C14—N3—C13—C12−0.1 (5)C33—N5—C30—C34122.3 (3)
C11—C12—C13—N3−1.1 (5)C33—N5—C30—C312.4 (3)
C13—N3—C14—C19−178.9 (3)N5—C30—C31—C32−26.2 (3)
C13—N3—C14—C151.4 (5)C34—C30—C31—C32−146.0 (3)
N3—C14—C15—C16179.3 (3)C30—C31—C32—C3340.0 (3)
C19—C14—C15—C16−0.5 (4)C30—N5—C33—C3222.2 (3)
N3—C14—C15—C11−1.4 (4)C31—C32—C33—N5−38.3 (4)
C19—C14—C15—C11178.8 (3)N5—C30—C34—O3173.5 (3)
C12—C11—C15—C16179.4 (3)C31—C30—C34—O3−70.4 (3)
C10—C11—C15—C16−3.6 (4)N5—C30—C34—O2−6.9 (4)
C12—C11—C15—C140.2 (4)C31—C30—C34—O2109.1 (3)
C10—C11—C15—C14177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.881.872.749 (3)177
N2—H2n···O3i0.881.952.806 (3)165
N5—H5a···N40.922.162.912 (3)138
N5—H5a···O3i0.922.403.111 (3)134
N5—H5b···O4ii0.922.032.858 (3)149
O4—H4o···N3iii0.841.982.805 (4)168

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x, y, z−1; (iii) x, y−1, z+1.

Footnotes

1Data reported in this paper were previously deposited with the CCDC (No. 727265).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5216).

References

  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Mandal, T. & Zhao, C.-G. (2008). Angew Chem. Int Ed 47, 7714–7717. [PubMed]
  • Muramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2962. [PMC free article] [PubMed]
  • Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vakulya, B., Varga, S., Csámpai, A. & Soós, T. (2005). Org. Lett. 7, 1967–1969. [PubMed]
  • Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233–234.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography