PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o2991.
Published online 2009 November 4. doi:  10.1107/S1600536809045644
PMCID: PMC2972065

Cinnamyl 2-oxo-2H-chromene-3-carboxyl­ate

Abstract

The title compound, C19H14O4, was prepared by the reaction of 2-oxo-2H-chromene-3-acyl chloride with cinnamic alcohol. The whole mol­ecule is not planar, the dihedral angle between the planes of coumarin and benzene rings being 13.94 (4)°, but the plane of the coumarin ring and that of the ester group are almost coplanar, making a dihedral angle of 2.9 (1)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link two mol­ecules into dimers, and π–π stacking inter­actions between inversion-related rings of the coumarin groups [centroid–centroid distance 3.8380 (15) Å with a slippage of 1.535 Å], which connect the dimers into columns extending along [010].

Related literature

For the medicinal and biological activity of coumarins and their derivatives, see: Borges et al. (2005 [triangle]); Kontogiorgis & Hadjipavlou-Litina (2005 [triangle]); Gursoy & Karali (2003 [triangle]). For the development of coumarin derivatives as anti-HIV agents, see: Yu et al. (2003 [triangle], 2007 [triangle]). For the structure of menthyl 2-oxo-2H-chromene-3-carboxyl­ate, see: Xu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2991-scheme1.jpg

Experimental

Crystal data

  • C19H14O4
  • M r = 306.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2991-efi1.jpg
  • a = 5.7026 (11) Å
  • b = 8.2969 (17) Å
  • c = 31.693 (6) Å
  • β = 92.96 (3)°
  • V = 1497.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 291 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Rigaku R-AXIS-IV diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.981, T max = 0.983
  • 4266 measured reflections
  • 2485 independent reflections
  • 2002 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.147
  • S = 1.08
  • 2485 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: R-AXIS (Rigaku, 1997 [triangle]); cell refinement: R-AXIS data reduction: R-AXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation & Rigaku, 2000 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045644/si2212sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045644/si2212Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Province (No. 2009A150012).

supplementary crystallographic information

Comment

The coumarins and derivatives display a wide range of biological activities, such as antiviral effect (Borges et al., 2005), anti-inflammatories (Kontogiorgis & Hadjipavlou-Litina, 2005), anti-bacterials (Gursoy & Karali, 2003), and anti-proliferative properties. (Yu et al., 2003; Yu et al., 2007), as well as being a kind of basic flavor compounds. As part of work, we have synthesized the title compound (I) and report its crystal structure here.

The molecular structure of (I) is shown in Fig. 1. It crystallizes in the E conformation, with an C11—C12—C13—C14 torsion angle of -19.6 (3)°. The plane of the coumarin ring and that of the ester group are almost co-planar, with a small dihedral angle of 2.9 (1) °, but the coumarin ring is not coplanar with the C14-benzene ring, forming a dihedral angle of 13.94 (4)°.

There are weak intermolecular C—H···O hydrogen bonds (Table 1) that link two molecules into a dimer (Fig. 2), and π-π stackings between two parallel rings [Cg1:O1, C1, C6, C7, C8, C9 and Cg2:C1i - C6i. Symmetry code:(i) -x, 1 - y, -z] with a slippage of 1.535 Å and Cg1···Cg2 distance of 3.8380 (15) Å that helps to connect dimers into columns along the b axis (Fig. 3). The perpendicular distance between the stacked coumarin rings is 3.518 Å.

Experimental

Compound (I) was synthesized as reported by Xu et al. (2009), starting from 2-oxo-2H-chromene-3-acyl chloride and cinnamic alcohol in equimolar amounts. Single crystals of the title compound suitable for X-ray diffractions were obtained by slow evaporation of a mixed solvent (ethyl acetate: petroleum ether = 1: 3, 7 ml) solution of the title compound (0.030 g).

Refinement

All H atoms were placed in calculated positions, with C—H= 0.93 Å, and Uiso(H)=1.2Ueq(C) for aromatic and vinyl H atoms; C—H=0.97 Å, and Uiso(H)=1.2 Ueq(C) for methylene H atoms. The final difference map had a highest peak at 0.64 Å from atom C8 and a deepest hole at 0.95 Å from atom C9, but were otherwise featureless.

Figures

Fig. 1.
PLATON plot of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure of the title compound showing weak C—H···O hydrogen bonds as dashed lines.
Fig. 3.
Packing diagram of the title compound.

Crystal data

C19H14O4F(000) = 640
Mr = 306.30Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 378 reflections
a = 5.7026 (11) Åθ = 1.3–25.0°
b = 8.2969 (17) ŵ = 0.10 mm1
c = 31.693 (6) ÅT = 291 K
β = 92.96 (3)°Block, colourless
V = 1497.5 (5) Å30.20 × 0.18 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS-IV diffractometer2485 independent reflections
Radiation source: fine-focus sealed tube2002 reflections with I > 2σ(I)
graphiteRint = 0.060
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.3°
Oscillation frames scansh = 0→6
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −9→9
Tmin = 0.981, Tmax = 0.983l = −37→37
4266 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.147w = 1/[σ2(Fo2) + (0.0708P)2 + 0.2535P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2485 reflectionsΔρmax = 0.24 e Å3
209 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.2090 (3)0.32886 (19)0.02988 (4)0.0567 (4)
O2−0.1217 (3)0.2749 (2)0.09679 (5)0.0696 (5)
O30.4778 (3)0.0109 (2)0.06191 (4)0.0638 (5)
O40.2725 (3)0.09462 (19)0.11589 (4)0.0534 (4)
C1−0.1652 (4)0.3240 (3)−0.01256 (6)0.0470 (5)
C2−0.3243 (4)0.4004 (3)−0.04038 (7)0.0621 (6)
H2A−0.45520.4528−0.03060.075*
C3−0.2838 (5)0.3967 (3)−0.08278 (7)0.0638 (7)
H3A−0.38860.4483−0.10180.077*
C4−0.0916 (4)0.3184 (3)−0.09790 (7)0.0623 (7)
H4A−0.06740.3179−0.12670.075*
C50.0644 (4)0.2410 (3)−0.07000 (6)0.0557 (6)
H5A0.19280.1867−0.08010.067*
C60.0297 (3)0.2440 (2)−0.02644 (6)0.0438 (5)
C70.1821 (4)0.1682 (3)0.00463 (6)0.0445 (5)
H7A0.31370.1139−0.00410.053*
C80.1425 (3)0.1722 (2)0.04622 (6)0.0421 (5)
C9−0.0628 (4)0.2578 (3)0.06115 (6)0.0493 (5)
C100.3154 (4)0.0854 (3)0.07502 (6)0.0451 (5)
C110.4328 (4)0.0061 (3)0.14417 (6)0.0581 (6)
H11A0.58290.06130.14680.070*
H11B0.4586−0.10090.13290.070*
C120.3306 (4)−0.0062 (3)0.18634 (6)0.0532 (6)
H12A0.4147−0.06670.20670.064*
C130.1334 (4)0.0596 (3)0.19788 (6)0.0483 (5)
H13A0.04790.11900.17750.058*
C140.0349 (4)0.0481 (2)0.24006 (6)0.0448 (5)
C15−0.1666 (4)0.1337 (3)0.24838 (7)0.0557 (6)
H15A−0.23590.19900.22740.067*
C16−0.2664 (4)0.1240 (3)0.28701 (7)0.0643 (7)
H16A−0.40150.18260.29180.077*
C17−0.1661 (4)0.0276 (3)0.31857 (7)0.0610 (7)
H17A−0.23500.01900.34440.073*
C180.0363 (5)−0.0556 (3)0.31136 (7)0.0592 (6)
H18A0.1065−0.11870.33270.071*
C190.1365 (4)−0.0463 (3)0.27266 (6)0.0530 (6)
H19A0.2733−0.10360.26820.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0587 (9)0.0672 (10)0.0450 (8)0.0205 (8)0.0100 (7)−0.0005 (7)
O20.0735 (11)0.0936 (13)0.0434 (8)0.0265 (10)0.0188 (8)−0.0040 (8)
O30.0654 (10)0.0836 (12)0.0431 (8)0.0282 (9)0.0102 (7)−0.0002 (8)
O40.0606 (9)0.0657 (10)0.0341 (7)0.0156 (8)0.0053 (6)−0.0006 (7)
C10.0493 (12)0.0461 (12)0.0459 (11)0.0017 (10)0.0064 (9)0.0010 (9)
C20.0594 (14)0.0684 (16)0.0585 (14)0.0179 (12)0.0030 (11)0.0045 (12)
C30.0639 (15)0.0732 (16)0.0535 (13)0.0069 (13)−0.0047 (11)0.0118 (12)
C40.0654 (15)0.0820 (18)0.0397 (12)−0.0056 (13)0.0043 (10)0.0094 (11)
C50.0543 (13)0.0722 (16)0.0412 (11)0.0038 (11)0.0089 (10)0.0023 (11)
C60.0452 (12)0.0473 (11)0.0394 (10)−0.0008 (9)0.0069 (9)0.0009 (9)
C70.0449 (11)0.0473 (12)0.0421 (11)0.0058 (9)0.0098 (8)−0.0009 (9)
C80.0484 (11)0.0415 (11)0.0370 (10)0.0023 (9)0.0078 (8)−0.0018 (8)
C90.0527 (13)0.0529 (13)0.0428 (11)0.0059 (10)0.0085 (9)−0.0026 (10)
C100.0494 (12)0.0493 (12)0.0374 (10)0.0022 (10)0.0092 (9)−0.0028 (9)
C110.0596 (14)0.0747 (15)0.0396 (11)0.0136 (12)−0.0006 (10)−0.0011 (11)
C120.0599 (14)0.0633 (14)0.0360 (10)0.0072 (11)−0.0022 (9)0.0020 (10)
C130.0534 (13)0.0513 (12)0.0398 (10)0.0007 (10)−0.0027 (9)0.0028 (9)
C140.0460 (12)0.0469 (11)0.0412 (10)−0.0055 (9)−0.0008 (9)−0.0016 (9)
C150.0502 (12)0.0658 (14)0.0505 (12)0.0030 (11)−0.0015 (10)0.0049 (11)
C160.0529 (14)0.0815 (18)0.0593 (14)0.0091 (13)0.0096 (11)−0.0045 (13)
C170.0665 (15)0.0762 (17)0.0413 (12)−0.0027 (13)0.0130 (10)−0.0016 (11)
C180.0770 (16)0.0593 (14)0.0410 (11)0.0070 (13)0.0004 (10)0.0015 (10)
C190.0620 (14)0.0541 (13)0.0429 (11)0.0086 (11)0.0017 (10)0.0006 (10)

Geometric parameters (Å, °)

O1—C11.381 (2)C8—C101.494 (3)
O1—C91.393 (3)C11—C121.489 (3)
O2—C91.203 (2)C11—H11A0.9700
O3—C101.205 (2)C11—H11B0.9700
O4—C101.333 (2)C12—C131.319 (3)
O4—C111.447 (3)C12—H12A0.9300
C1—C61.385 (3)C13—C141.480 (3)
C1—C21.386 (3)C13—H13A0.9300
C2—C31.375 (3)C14—C151.388 (3)
C2—H2A0.9300C14—C191.398 (3)
C3—C41.381 (4)C15—C161.379 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.380 (3)C16—C171.382 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.405 (3)C17—C181.374 (4)
C5—H5A0.9300C17—H17A0.9300
C6—C71.426 (3)C18—C191.382 (3)
C7—C81.349 (3)C18—H18A0.9300
C7—H7A0.9300C19—H19A0.9300
C8—C91.469 (3)
C1—O1—C9123.31 (16)O4—C10—C8114.69 (17)
C10—O4—C11115.52 (16)O4—C11—C12109.07 (18)
O1—C1—C6120.76 (18)O4—C11—H11A109.9
O1—C1—C2117.44 (19)C12—C11—H11A109.9
C6—C1—C2121.8 (2)O4—C11—H11B109.9
C3—C2—C1118.3 (2)C12—C11—H11B109.9
C3—C2—H2A120.9H11A—C11—H11B108.3
C1—C2—H2A120.9C13—C12—C11126.8 (2)
C2—C3—C4121.7 (2)C13—C12—H12A116.6
C2—C3—H3A119.1C11—C12—H12A116.6
C4—C3—H3A119.1C12—C13—C14126.4 (2)
C5—C4—C3119.6 (2)C12—C13—H13A116.8
C5—C4—H4A120.2C14—C13—H13A116.8
C3—C4—H4A120.2C15—C14—C19117.52 (19)
C4—C5—C6120.2 (2)C15—C14—C13119.69 (19)
C4—C5—H5A119.9C19—C14—C13122.79 (19)
C6—C5—H5A119.9C16—C15—C14121.5 (2)
C1—C6—C5118.45 (19)C16—C15—H15A119.2
C1—C6—C7117.54 (18)C14—C15—H15A119.2
C5—C6—C7124.00 (19)C15—C16—C17120.1 (2)
C8—C7—C6122.51 (18)C15—C16—H16A119.9
C8—C7—H7A118.7C17—C16—H16A119.9
C6—C7—H7A118.7C18—C17—C16119.4 (2)
C7—C8—C9120.19 (18)C18—C17—H17A120.3
C7—C8—C10116.55 (18)C16—C17—H17A120.3
C9—C8—C10123.26 (17)C17—C18—C19120.6 (2)
O2—C9—O1115.64 (19)C17—C18—H18A119.7
O2—C9—C8128.7 (2)C19—C18—H18A119.7
O1—C9—C8115.68 (17)C18—C19—C14120.8 (2)
O3—C10—O4123.20 (19)C18—C19—H19A119.6
O3—C10—C8122.10 (18)C14—C19—H19A119.6
C9—O1—C1—C60.9 (3)C7—C8—C9—O11.1 (3)
C9—O1—C1—C2−179.7 (2)C10—C8—C9—O1−178.51 (18)
O1—C1—C2—C3−180.0 (2)C11—O4—C10—O3−1.0 (3)
C6—C1—C2—C3−0.5 (4)C11—O4—C10—C8177.69 (18)
C1—C2—C3—C40.5 (4)C7—C8—C10—O3−2.4 (3)
C2—C3—C4—C50.2 (4)C9—C8—C10—O3177.2 (2)
C3—C4—C5—C6−1.0 (4)C7—C8—C10—O4178.87 (18)
O1—C1—C6—C5179.21 (19)C9—C8—C10—O4−1.5 (3)
C2—C1—C6—C5−0.2 (3)C10—O4—C11—C12−166.07 (19)
O1—C1—C6—C7−0.2 (3)O4—C11—C12—C13−3.8 (3)
C2—C1—C6—C7−179.6 (2)C11—C12—C13—C14−179.2 (2)
C4—C5—C6—C11.0 (3)C12—C13—C14—C15175.4 (2)
C4—C5—C6—C7−179.7 (2)C12—C13—C14—C19−4.5 (3)
C1—C6—C7—C8−0.1 (3)C19—C14—C15—C16−1.2 (3)
C5—C6—C7—C8−179.4 (2)C13—C14—C15—C16178.8 (2)
C6—C7—C8—C9−0.4 (3)C14—C15—C16—C170.0 (4)
C6—C7—C8—C10179.19 (19)C15—C16—C17—C181.4 (4)
C1—O1—C9—O2178.6 (2)C16—C17—C18—C19−1.5 (4)
C1—O1—C9—C8−1.4 (3)C17—C18—C19—C140.2 (4)
C7—C8—C9—O2−178.9 (2)C15—C14—C19—C181.1 (3)
C10—C8—C9—O21.5 (4)C13—C14—C19—C18−178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.543.344 (3)145
C7—H7A···O3i0.932.463.292 (3)149

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2212).

References

  • Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. [PubMed]
  • Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.
  • Gursoy, A. & Karali, N. (2003). Turk. J. Chem, 27, 545–551.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem. 48, 6400–6408. [PubMed]
  • Molecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1997). R-AXIS. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xu, C.-L., Liu, S.-Y., Chen, G., Yang, G.-Y. & Zhao, M.-Q. (2009). Acta Cryst. E65, o2431. [PMC free article] [PubMed]
  • Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132. [PubMed]
  • Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography