PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3182.
Published online 2009 November 21. doi:  10.1107/S1600536809049253
PMCID: PMC2972060

4-(4-Bromo­phen­yl)-2,6-diphenyl­pyridine

Abstract

In the title compound, C23H16BrN, the three benzene rings show a disrotatory counter-rotating arrangement around the central pyridine ring and are twisted with respect to the pyridine ring with dihedral angles of 19.56 (13), 27.54 (13) and 30.51 (13)°.

Related literature

For applications of the title compound, see: Verma et al. (2007 [triangle]); Vellis et al. (2008 [triangle]). For related structures, see: Lv & Huang (2008 [triangle]); Ondrá˘cek et al. (1994 [triangle]). For the synthesis, see: Verma et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3182-scheme1.jpg

Experimental

Crystal data

  • C23H16BrN
  • M r = 386.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3182-efi1.jpg
  • a = 8.9837 (4) Å
  • b = 21.5202 (10) Å
  • c = 9.6108 (4) Å
  • β = 105.5940 (10)°
  • V = 1789.67 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.30 mm−1
  • T = 293 K
  • 0.30 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.542, T max = 0.652
  • 13423 measured reflections
  • 4325 independent reflections
  • 2433 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.105
  • S = 1.01
  • 4325 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049253/xu2640sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049253/xu2640Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CAS and Jiangxi Provincial Department of Education for financial support for this work. In addition, the Materials Chemistry Department of Nanchang Hangkong University is acknowleged.

supplementary crystallographic information

Comment

The title compound, 4-(4-bromophenyl)-2,6-diphenylpyridine (I), is an useful intermediate in the synthesis of electroluminescent materials or new supramolecules (Verma et al., 2007; Vellis et al., 2008). It has been synthesized previously. We reported its structure here.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in reported the compound (Ondrá˘cek et al., 1994; Lv & Huang, 2008). The three phenyl rings display a disrotatory conformation and form different angles with the pyridine ring. The dihedral angles between the pyridine ring and the two phenyls in 2- and 6- position are 19.56 (13) and 27.54 (13) ° respectively, while the phenyl ring in 4- position forms the largest angle with the heterocycle, 30.51 (13)°.

Experimental

The title compound was prepared by literature method (Verma et al., 2007). Colorless single crystals suitable for X-ray diffraction were obtained from the solution of dichloromethane by vapor diffusion with hexane.

Refinement

All H atoms were positioned geomertrically and treated as riding (C—H = 0.93 Å) with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
: The molecular structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level. The H atoms are omitted for clarity.

Crystal data

C23H16BrNF(000) = 784
Mr = 386.28Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 987 reflections
a = 8.9837 (4) Åθ = 2.9–25.1°
b = 21.5202 (10) ŵ = 2.30 mm1
c = 9.6108 (4) ÅT = 293 K
β = 105.594 (1)°Block, colorless
V = 1789.67 (14) Å30.30 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4325 independent reflections
Radiation source: fine-focus sealed tube2433 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.542, Tmax = 0.652k = −28→27
13423 measured reflectionsl = −11→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0449P)2 + 0.3089P] where P = (Fo2 + 2Fc2)/3
4325 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.28459 (4)0.440827 (13)0.83895 (4)0.08918 (16)
N1−0.0501 (2)0.82145 (8)0.9831 (2)0.0538 (5)
C7−0.1196 (2)0.76960 (11)1.0130 (2)0.0518 (6)
C120.1459 (2)0.87312 (11)0.8977 (3)0.0530 (6)
C210.2129 (3)0.52227 (11)0.8610 (3)0.0597 (6)
C230.2619 (3)0.62976 (12)0.9073 (3)0.0599 (6)
H23A0.33100.66280.92680.072*
C160.2240 (3)0.97801 (12)0.9653 (3)0.0733 (7)
H16A0.22201.01251.02300.088*
C90.0510 (3)0.70294 (10)0.9250 (3)0.0527 (6)
C110.0680 (3)0.81496 (10)0.9238 (3)0.0527 (6)
C100.1200 (3)0.75706 (11)0.8935 (3)0.0570 (6)
H10A0.20190.75450.85170.068*
C8−0.0713 (3)0.71067 (10)0.9864 (3)0.0556 (6)
H8A−0.12120.67591.00980.067*
C190.0068 (3)0.59007 (11)0.8679 (3)0.0617 (6)
H19A−0.09780.59620.85910.074*
C180.1063 (3)0.64034 (10)0.8985 (3)0.0526 (6)
C170.1437 (3)0.92504 (11)0.9818 (3)0.0629 (7)
H17A0.08760.92431.05020.076*
C150.3066 (3)0.98002 (13)0.8645 (3)0.0718 (8)
H15A0.36291.01540.85550.086*
C130.2264 (3)0.87648 (12)0.7932 (3)0.0620 (6)
H13A0.22660.84250.73350.074*
C5−0.3104 (3)0.73186 (13)1.1431 (3)0.0683 (7)
H5A−0.25900.69391.15850.082*
C200.0587 (3)0.53108 (11)0.8502 (3)0.0628 (6)
H20A−0.00960.49770.83130.075*
C6−0.2546 (3)0.77920 (11)1.0728 (3)0.0525 (6)
C1−0.3309 (3)0.83534 (12)1.0563 (3)0.0681 (7)
H1B−0.29420.86811.01170.082*
C2−0.4611 (3)0.84380 (13)1.1047 (3)0.0772 (8)
H2A−0.51100.88211.09260.093*
C140.3058 (3)0.92962 (13)0.7769 (3)0.0716 (8)
H14A0.35910.93130.70630.086*
C4−0.4407 (3)0.74032 (14)1.1904 (3)0.0748 (8)
H4A−0.47740.70801.23610.090*
C220.3151 (3)0.57114 (12)0.8876 (3)0.0640 (7)
H22A0.41870.56480.89240.077*
C3−0.5166 (3)0.79637 (13)1.1701 (3)0.0731 (8)
H3A−0.60540.80191.20090.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0970 (3)0.0623 (2)0.1124 (3)0.02012 (15)0.0353 (2)0.00041 (16)
N10.0535 (11)0.0557 (11)0.0563 (13)−0.0001 (9)0.0215 (9)−0.0006 (9)
C70.0517 (13)0.0565 (13)0.0503 (15)0.0016 (10)0.0190 (11)0.0046 (11)
C120.0506 (13)0.0571 (14)0.0539 (15)−0.0012 (10)0.0185 (11)−0.0006 (11)
C210.0681 (16)0.0547 (14)0.0591 (16)0.0088 (12)0.0220 (13)0.0018 (11)
C230.0553 (14)0.0605 (15)0.0697 (17)−0.0020 (11)0.0268 (13)0.0006 (12)
C160.0888 (19)0.0562 (15)0.078 (2)−0.0075 (14)0.0275 (16)−0.0077 (13)
C90.0499 (13)0.0569 (13)0.0530 (15)−0.0002 (10)0.0169 (11)0.0002 (11)
C110.0538 (13)0.0556 (13)0.0518 (15)−0.0034 (10)0.0193 (11)−0.0010 (11)
C100.0540 (14)0.0617 (14)0.0616 (16)−0.0008 (11)0.0264 (12)−0.0023 (12)
C80.0550 (14)0.0519 (13)0.0642 (17)−0.0024 (11)0.0233 (12)0.0033 (11)
C190.0509 (13)0.0642 (15)0.0719 (18)0.0019 (12)0.0199 (12)−0.0034 (13)
C180.0546 (14)0.0536 (13)0.0534 (15)0.0016 (11)0.0211 (11)0.0022 (11)
C170.0676 (15)0.0623 (15)0.0651 (18)−0.0021 (12)0.0283 (13)−0.0044 (12)
C150.0720 (17)0.0625 (16)0.082 (2)−0.0154 (13)0.0233 (16)0.0028 (14)
C130.0646 (15)0.0619 (15)0.0654 (17)−0.0070 (12)0.0276 (13)−0.0063 (12)
C50.0726 (17)0.0617 (15)0.080 (2)0.0029 (13)0.0366 (15)0.0087 (13)
C200.0646 (16)0.0544 (14)0.0713 (18)−0.0029 (12)0.0214 (13)−0.0035 (12)
C60.0484 (13)0.0567 (13)0.0560 (15)0.0003 (10)0.0199 (11)−0.0019 (11)
C10.0663 (16)0.0598 (15)0.088 (2)0.0006 (12)0.0375 (15)0.0012 (14)
C20.0694 (17)0.0671 (17)0.106 (2)0.0104 (13)0.0426 (17)−0.0017 (16)
C140.0718 (17)0.0760 (18)0.076 (2)−0.0115 (13)0.0353 (15)0.0028 (15)
C40.0745 (18)0.0799 (19)0.083 (2)−0.0101 (15)0.0439 (16)0.0053 (15)
C220.0567 (14)0.0686 (17)0.0702 (18)0.0105 (12)0.0231 (13)0.0039 (13)
C30.0576 (16)0.087 (2)0.084 (2)0.0001 (14)0.0350 (15)−0.0095 (16)

Geometric parameters (Å, °)

Br1—C211.899 (2)C19—C201.379 (3)
N1—C111.340 (3)C19—C181.383 (3)
N1—C71.347 (3)C19—H19A0.9300
C7—C81.386 (3)C17—H17A0.9300
C7—C61.490 (3)C15—C141.372 (4)
C12—C171.382 (3)C15—H15A0.9300
C12—C131.389 (3)C13—C141.379 (3)
C12—C111.488 (3)C13—H13A0.9300
C21—C201.374 (3)C5—C41.377 (3)
C21—C221.374 (4)C5—C61.388 (3)
C23—C221.380 (3)C5—H5A0.9300
C23—C181.397 (3)C20—H20A0.9300
C23—H23A0.9300C6—C11.377 (3)
C16—C151.371 (4)C1—C21.383 (3)
C16—C171.381 (3)C1—H1B0.9300
C16—H16A0.9300C2—C31.362 (4)
C9—C81.390 (3)C2—H2A0.9300
C9—C101.390 (3)C14—H14A0.9300
C9—C181.481 (3)C4—C31.374 (4)
C11—C101.389 (3)C4—H4A0.9300
C10—H10A0.9300C22—H22A0.9300
C8—H8A0.9300C3—H3A0.9300
C11—N1—C7118.03 (19)C16—C17—H17A119.6
N1—C7—C8122.17 (19)C12—C17—H17A119.6
N1—C7—C6116.1 (2)C16—C15—C14119.6 (2)
C8—C7—C6121.7 (2)C16—C15—H15A120.2
C17—C12—C13118.2 (2)C14—C15—H15A120.2
C17—C12—C11120.1 (2)C14—C13—C12120.8 (2)
C13—C12—C11121.7 (2)C14—C13—H13A119.6
C20—C21—C22121.2 (2)C12—C13—H13A119.6
C20—C21—Br1118.97 (19)C4—C5—C6120.9 (3)
C22—C21—Br1119.85 (19)C4—C5—H5A119.5
C22—C23—C18121.2 (2)C6—C5—H5A119.5
C22—C23—H23A119.4C21—C20—C19119.0 (2)
C18—C23—H23A119.4C21—C20—H20A120.5
C15—C16—C17120.4 (2)C19—C20—H20A120.5
C15—C16—H16A119.8C1—C6—C5117.8 (2)
C17—C16—H16A119.8C1—C6—C7120.6 (2)
C8—C9—C10116.2 (2)C5—C6—C7121.6 (2)
C8—C9—C18121.4 (2)C6—C1—C2121.1 (2)
C10—C9—C18122.3 (2)C6—C1—H1B119.4
N1—C11—C10122.1 (2)C2—C1—H1B119.4
N1—C11—C12116.48 (19)C3—C2—C1120.3 (3)
C10—C11—C12121.3 (2)C3—C2—H2A119.8
C11—C10—C9120.8 (2)C1—C2—H2A119.8
C11—C10—H10A119.6C15—C14—C13120.2 (3)
C9—C10—H10A119.6C15—C14—H14A119.9
C7—C8—C9120.7 (2)C13—C14—H14A119.9
C7—C8—H8A119.7C3—C4—C5120.2 (3)
C9—C8—H8A119.7C3—C4—H4A119.9
C20—C19—C18121.7 (2)C5—C4—H4A119.9
C20—C19—H19A119.1C21—C22—C23119.1 (2)
C18—C19—H19A119.1C21—C22—H22A120.4
C19—C18—C23117.7 (2)C23—C22—H22A120.4
C19—C18—C9121.4 (2)C2—C3—C4119.6 (2)
C23—C18—C9120.9 (2)C2—C3—H3A120.2
C16—C17—C12120.7 (2)C4—C3—H3A120.2
C11—N1—C7—C81.0 (3)C13—C12—C17—C16−2.2 (4)
C11—N1—C7—C6−177.4 (2)C11—C12—C17—C16175.7 (2)
C7—N1—C11—C10−0.3 (4)C17—C16—C15—C141.8 (4)
C7—N1—C11—C12−177.6 (2)C17—C12—C13—C142.0 (4)
C17—C12—C11—N126.4 (3)C11—C12—C13—C14−175.9 (2)
C13—C12—C11—N1−155.7 (2)C22—C21—C20—C19−0.6 (4)
C17—C12—C11—C10−150.9 (2)Br1—C21—C20—C19179.22 (19)
C13—C12—C11—C1027.0 (4)C18—C19—C20—C21−1.1 (4)
N1—C11—C10—C9−0.4 (4)C4—C5—C6—C12.0 (4)
C12—C11—C10—C9176.8 (2)C4—C5—C6—C7−176.2 (3)
C8—C9—C10—C110.4 (3)N1—C7—C6—C119.2 (3)
C18—C9—C10—C11−178.1 (2)C8—C7—C6—C1−159.2 (2)
N1—C7—C8—C9−1.0 (4)N1—C7—C6—C5−162.6 (2)
C6—C7—C8—C9177.3 (2)C8—C7—C6—C519.0 (4)
C10—C9—C8—C70.2 (4)C5—C6—C1—C2−1.6 (4)
C18—C9—C8—C7178.7 (2)C7—C6—C1—C2176.6 (3)
C20—C19—C18—C231.6 (4)C6—C1—C2—C3−0.1 (5)
C20—C19—C18—C9−176.7 (2)C16—C15—C14—C13−2.0 (4)
C22—C23—C18—C19−0.6 (4)C12—C13—C14—C150.1 (4)
C22—C23—C18—C9177.8 (2)C6—C5—C4—C3−0.8 (4)
C8—C9—C18—C1930.6 (4)C20—C21—C22—C231.6 (4)
C10—C9—C18—C19−151.0 (2)Br1—C21—C22—C23−178.2 (2)
C8—C9—C18—C23−147.7 (2)C18—C23—C22—C21−0.9 (4)
C10—C9—C18—C2330.7 (3)C1—C2—C3—C41.3 (5)
C15—C16—C17—C120.4 (4)C5—C4—C3—C2−0.9 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2640).

References

  • Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186. [PMC free article] [PubMed]
  • Ondrá˘cek, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vellis, P. D., Yeb, S., Mikroyannidisa, J. A. & Liub, Y. (2008). Synth. Met. 158, 854–860.
  • Verma, A. K., Koul, S., Pannub, A. P. S. & Razdan, T. K. (2007). Tetrahedron, 63, 8715–8722.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography