PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): i89.
Published online 2009 November 14. doi:  10.1107/S1600536809047096
PMCID: PMC2972059

catena-Poly[[tetra­aqua­copper(II)]-μ-tri­thionato-κ2 O:O′]

Abstract

The title supra­molecular polymer, [Cu(S3O6)(H2O)4]n, features a tetra­gonally distorted octa­hedral CuII centre within an O6 donor set with the longer Cu—O bonds linking the dication and the trithio­nate dianion. Extensive O—H(...)O hydrogen-bonding inter­actions connect the supra­molecular chains into a three-dimensional network.

Related literature

For crystal structures containing the trithionate anion, see: Chun et al. (2000 [triangle]); Díaz de Vivar et al. (2005 [triangle]); Ferrari et al. (1977 [triangle]). For related copper(II) structures with bridging di-sulfonato ligands, see: Charbonnier et al. (1977a [triangle],b [triangle]); Pasquale et al. (2007 [triangle]); Wang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00i89-scheme1.jpg

Experimental

Crystal data

  • [Cu(S3O6)(H2O)4]
  • M r = 327.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i89-efi1.jpg
  • a = 7.1816 (1) Å
  • b = 21.4405 (4) Å
  • c = 7.7286 (1) Å
  • β = 116.092 (1)°
  • V = 1068.75 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.66 mm−1
  • T = 100 K
  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.911, T max = 1
  • 9081 measured reflections
  • 2434 independent reflections
  • 2291 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.108
  • S = 1.03
  • 2434 reflections
  • 151 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 1.47 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047096/hb5217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047096/hb5217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Dr Zhang Qichun, Nanyang Technological University, is gratefully thanked for the sample.

supplementary crystallographic information

Comment

The title compound, (I), was obtained from an hydrothernal synthesis (see Experimental) and characterized crystallographically. The asymmetric unit comprises a tetraaqua copper(II) cation and a trithionato dianion, Fig. 1. In the crystal structure, the ions are connected as each trithionato dianion bridges two CuII centres thereby forming a supramolecular chain, Fig. 2. The CuII centre exists in a tetragonally distorted O6 octahedron with the Cu—Oaqua bonds [2.047 (3) - 2.047 (3) Å] being significantly shorter than the Cu—Otrithionato bonds [2.524 (3) and 2.564 (3) Å]. The Cu atom lies 0.025 (2) out of the basal plane defined by the four aqua-O atoms (RMS = 0.080 Å) in the direction of the O8i atom, and the O5–Cu–O8i axial angle is 157.74 (10) ° for i: 1 + x, y, 1 + z. Within the trithionato dianion, the S1–S2 and S2–S3 bond distances are 2.1450 (11) and 2.1184 (12) Å, respectively, and the S1–S2–S3 angle is 101.68 (5) Å. In the crystal structure, there is a considerable number of hydrogen bonding interactions. These occur within the supramolecular chain as well as between chains to form a 2-D array in the ac plane, Fig. 3. Connections between layers lead to a 3-D network, Fig. 4.

Structures containing the trithionato dianion are comparatively rare, with only three such examples (Chun et al., 2000; Díaz de Vivar et al., 2005; Ferrari et al., 1977). In the same way, structures having [Cu(OH2)4]2+ centres bridged by bi-functional sulfonato ligands are uncommon (Charbonnier et al., 1977a, b; Pasquale et al., 2007; Wang et al., 2005).

Experimental

The blue crystal used in the present study was harvested from the hydrothermal reaction of stoichiometric amounts of CuCl, SeS2, S, and N2H4.H2O. The reagents were heated to 420 K for 3 d in a 25 ml Teflon-lined stainless-steel autoclave. After the reaction, the bomb was cooled to room temperature. The solution was filtered and layered with methanol. After four weeks, blue needles of (I) were collected and dried in air.

Refinement

The O-bound H-atoms were located in a difference Fourier map and were refined with O–H and H···H restraints of 0.840±0.001 Å and 1.39±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The asymmetric unit in (I) extended to show the coordination geometry about the Cu atom, showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) 1 + x, y, 1 + z.
Fig. 2.
Supramolecular chain formation in (I). Colour code: Cu, brown; S, yellow; O, red; and H, green.
Fig. 3.
Supramolecular layer formation in (I) viewed in projection down the b axis. Chains shown in Fig. 2 are linked via O–H···O (orange dashed lines) hydrogen bonds. Colour code as for Fig. 2.
Fig. 4.
Unit-cell contents for (I) highlighting the 3-D network. The O–H···O hydrogen bonds are shown as orange dashed lines. Colour code as for Fig. 2.

Crystal data

[Cu(S3O6)(H2O)4]F(000) = 660
Mr = 327.78Dx = 2.037 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6028 reflections
a = 7.1816 (1) Åθ = 3.1–27.6°
b = 21.4405 (4) ŵ = 2.66 mm1
c = 7.7286 (1) ÅT = 100 K
β = 116.092 (1)°Needle, blue
V = 1068.75 (3) Å30.30 × 0.10 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer2434 independent reflections
Radiation source: sealed tube2291 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.911, Tmax = 1k = −27→27
9081 measured reflectionsl = −9→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0493P)2 + 7.019P] where P = (Fo2 + 2Fc2)/3
2434 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 1.47 e Å3
12 restraintsΔρmin = −0.84 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.19601 (7)0.85880 (2)0.51918 (6)0.01169 (14)
O10.2615 (5)0.81059 (15)0.3309 (5)0.0268 (7)
H1O0.14750.80790.23230.040*
H2O0.31040.77530.37520.040*
O20.2609 (5)0.93801 (15)0.4087 (5)0.0287 (7)
H3O0.37910.93530.41200.043*
H4O0.24800.97100.46110.043*
O30.1488 (5)0.90825 (15)0.7159 (5)0.0264 (7)
H5O0.18200.94590.71880.040*
H6O0.02330.90460.69190.040*
O40.1007 (5)0.77999 (16)0.6068 (5)0.0293 (7)
H7O0.05260.78400.68760.044*
H8O0.03110.75470.51900.044*
S1−0.31167 (13)0.90509 (4)0.20735 (12)0.01136 (19)
S2−0.27573 (13)0.94093 (4)−0.03534 (11)0.00925 (18)
S3−0.28093 (13)0.85804 (4)−0.18661 (12)0.0127 (2)
O5−0.1785 (4)0.85083 (12)0.2738 (4)0.0145 (5)
O6−0.2390 (5)0.95873 (13)0.3340 (4)0.0194 (6)
O7−0.5286 (4)0.89104 (14)0.1427 (4)0.0185 (6)
O8−0.4614 (4)0.82243 (13)−0.2060 (4)0.0168 (5)
O9−0.0873 (4)0.82490 (13)−0.0809 (4)0.0169 (5)
O10−0.2992 (4)0.88484 (15)−0.3653 (4)0.0207 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0123 (2)0.0112 (2)0.0125 (2)−0.00021 (15)0.00630 (17)0.00000 (15)
O10.0282 (16)0.0247 (15)0.0250 (16)0.0013 (13)0.0094 (13)−0.0021 (12)
O20.0325 (17)0.0244 (16)0.0334 (18)0.0006 (13)0.0183 (15)0.0002 (13)
O30.0279 (16)0.0248 (15)0.0277 (16)−0.0018 (12)0.0133 (14)−0.0020 (12)
O40.0320 (17)0.0271 (16)0.0283 (17)−0.0018 (13)0.0130 (14)0.0019 (13)
S10.0125 (4)0.0115 (4)0.0101 (4)0.0007 (3)0.0050 (3)0.0010 (3)
S20.0132 (4)0.0077 (4)0.0085 (4)−0.0006 (3)0.0063 (3)0.0003 (3)
S30.0111 (4)0.0163 (4)0.0106 (4)0.0000 (3)0.0047 (3)−0.0002 (3)
O50.0164 (13)0.0124 (12)0.0133 (12)0.0027 (10)0.0052 (10)0.0026 (9)
O60.0286 (15)0.0139 (13)0.0148 (13)−0.0004 (11)0.0087 (11)−0.0020 (10)
O70.0131 (13)0.0269 (15)0.0162 (13)0.0011 (11)0.0071 (11)0.0044 (11)
O80.0140 (12)0.0183 (13)0.0173 (13)−0.0026 (10)0.0063 (10)−0.0024 (10)
O90.0137 (12)0.0189 (13)0.0164 (13)0.0031 (10)0.0049 (10)−0.0007 (10)
O100.0183 (13)0.0321 (16)0.0130 (13)0.0008 (12)0.0081 (11)0.0034 (11)

Geometric parameters (Å, °)

Cu—O32.001 (3)O3—H6O0.8401
Cu—O12.002 (3)O4—H7O0.8401
Cu—O22.045 (3)O4—H8O0.8401
Cu—O42.047 (3)S1—O71.443 (3)
Cu—O52.524 (3)S1—O51.449 (3)
Cu—O8i2.564 (3)S1—O61.450 (3)
O1—H1O0.8401S1—S22.1450 (11)
O1—H2O0.8401S2—S32.1184 (12)
O2—H3O0.8401S3—O101.448 (3)
O2—H4O0.8401S3—O91.452 (3)
O3—H5O0.8401S3—O81.454 (3)
O3—Cu—O1176.54 (14)Cu—O4—H8O116.6
O3—Cu—O291.32 (13)H7O—O4—H8O111.9
O1—Cu—O287.46 (13)O7—S1—O5113.51 (17)
O3—Cu—O489.60 (14)O7—S1—O6114.36 (18)
O1—Cu—O491.95 (14)O5—S1—O6114.32 (16)
O2—Cu—O4174.05 (14)O7—S1—S2107.39 (12)
Cu—O1—H1O104.4O5—S1—S2106.44 (12)
Cu—O1—H2O111.0O6—S1—S299.21 (12)
H1O—O1—H2O111.9S3—S2—S1101.68 (5)
Cu—O2—H3O110.1O10—S3—O9113.18 (17)
Cu—O2—H4O113.9O10—S3—O8114.04 (17)
H3O—O2—H4O111.5O9—S3—O8113.01 (17)
Cu—O3—H5O112.9O10—S3—S299.54 (13)
Cu—O3—H6O107.9O9—S3—S2108.67 (12)
H5O—O3—H6O111.2O8—S3—S2107.22 (12)
Cu—O4—H7O118.0
O7—S1—S2—S3−78.83 (14)S1—S2—S3—O10168.90 (12)
O5—S1—S2—S343.05 (12)S1—S2—S3—O9−72.54 (13)
O6—S1—S2—S3161.92 (13)S1—S2—S3—O849.91 (13)

Symmetry codes: (i) x+1, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···O90.842.293.080 (5)157
O1—H2o···O9ii0.842.253.071 (4)166
O2—H3o···O10i0.842.443.079 (5)133
O2—H4o···O6iii0.842.213.026 (4)165
O3—H5o···O6iii0.842.162.987 (4)169
O3—H6o···O10iv0.842.203.037 (5)174
O4—H7o···O9iv0.842.563.383 (5)166
O4—H8o···O8ii0.842.423.149 (4)146

Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (i) x+1, y, z+1; (iii) −x, −y+2, −z+1; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5217).

References

  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Charbonnier, F., Faure, R. & Loiseleur, H. (1977a). Acta Cryst. B33, 3342–3345.
  • Charbonnier, F., Faure, R. & Loiseleur, H. (1977b). Acta Cryst. B33, 3759–3761.
  • Chun, H., Jackson, W. G., McKeon, J. A., Somoza, F. B. Jr & Bernal, I. (2000). Eur. J. Inorg. Chem. pp. 189–193.
  • Díaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2005). Acta Cryst. C61, m289–m291. [PubMed]
  • Ferrari, M. B., Fava, G. G. & Pelizzi, C. (1977). Chem. Commun. p. 8.
  • Pasquale, M. A., Bolzán, A. E., Güida, J. A., Piatti, R. C. V., Arvia, A. J., Piro, O. E. & Castellano, E. E. (2007). Solid State Sci. 9, 862–868.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, L., Yu, X.-L., Cai, J. & Huang, J.-W. (2005). J. Chem. Crystallogr. 35, 481–486.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography