PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o2999.
Published online 2009 November 4. doi:  10.1107/S1600536809045929
PMCID: PMC2972056

3-(2-Bromo­phen­yl)-N-phenyl­oxirane-2-carboxamide

Abstract

In the mol­ecule of the title compound, C15H12BrNO2, the two benzene rings adopt a syn configuration with respect to the ep­oxy ring; the dihedral angles between the ep­oxy ring and the two benzene rings are 59.90 (13) and 68.01 (12)°. Inter­molecular N—H(...)O and C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For epoxide-containing compounds used as building blocks in synthesis, see: Flisak et al. (1993 [triangle]); Watanabe et al. (1998 [triangle]); Zhu & Espenson (1995 [triangle]). For related structures, see: He (2009 [triangle]); He & Chen (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2999-scheme1.jpg

Experimental

Crystal data

  • C15H12BrNO2
  • M r = 318.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2999-efi1.jpg
  • a = 6.71700 (10) Å
  • b = 10.0370 (2) Å
  • c = 20.4287 (3) Å
  • V = 1377.27 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.05 mm−1
  • T = 295 K
  • 0.40 × 0.40 × 0.36 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.294, T max = 0.324
  • 17721 measured reflections
  • 2701 independent reflections
  • 2675 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.069
  • S = 1.01
  • 2701 reflections
  • 177 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.42 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1104 Friedel pairs
  • Flack parameter: −0.008 (18)

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045929/xu2664sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045929/xu2664Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The diffraction data were collected at The Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University.

supplementary crystallographic information

Comment

Epoxides are important intermediates in organic synthesis. Glycidic esters and amides are particularly useful as they can be further transformed to key intermediates of several pharmaceutical products (Flisak et al. 1993; Watanabe et al. 1998). The Darzens reaction, is one of the most powerful methodologies for the synthesis of α, β-epoxy carbonyl and related compounds (Zhu & Espenson, 1995). We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. In the molecule, the two phenyl ring adopts a cis configuration about the epoxides ring. The dihedral angle between the C1—C6 and C10—C15 is 77.05 (7)°, O1/C7/C8 epoxide ring makes dihedral angles of 59.90 (13)° and 68.01 (12)° with C6 and C15 phenyl ring, respectively, which is similar to that found in a related structure (He & Chen, 2009). The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Experimental

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 2-bromophenylaldehyde (0.15 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature for 1 d.

Refinement

Imine H atom was located in a difference Fourier map and refined isotropically. The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C15H12BrNO2F(000) = 640
Mr = 318.17Dx = 1.534 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 15647 reflections
a = 6.7170 (1) Åθ = 2.2–72.1°
b = 10.0370 (2) ŵ = 4.05 mm1
c = 20.4287 (3) ÅT = 295 K
V = 1377.27 (4) Å3Block, colorless
Z = 40.40 × 0.40 × 0.36 mm

Data collection

Oxford Diffraction Gemini S Ultra diffractometer2701 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2675 reflections with I > 2σ(I)
mirrorRint = 0.028
Detector resolution: 15.9149 pixels mm-1θmax = 72.3°, θmin = 4.3°
ω scansh = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −11→12
Tmin = 0.294, Tmax = 0.324l = −24→25
17721 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028w = 1/[σ2(Fo2) + (0.035P)2 + 0.5235P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.33 e Å3
2701 reflectionsΔρmin = −0.42 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0074 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1104 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.008 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.14003 (5)0.63054 (3)0.557209 (16)0.07563 (15)
O1−0.1933 (3)0.23595 (16)0.66346 (9)0.0567 (4)
O2−0.0059 (3)0.50889 (16)0.76057 (10)0.0637 (5)
N10.1077 (3)0.29560 (18)0.75313 (9)0.0437 (4)
C50.1656 (4)0.2794 (3)0.59008 (13)0.0582 (6)
H50.14800.20150.61400.070*
C60.0186 (3)0.3772 (2)0.59138 (10)0.0470 (5)
C150.3410 (4)0.4080 (2)0.82806 (11)0.0520 (5)
H150.25880.48230.83140.062*
C9−0.0201 (3)0.3947 (2)0.74074 (11)0.0440 (4)
C8−0.1951 (3)0.3600 (2)0.69813 (11)0.0467 (5)
H8−0.32530.38930.71430.056*
C100.2882 (3)0.3016 (2)0.78857 (10)0.0407 (4)
C7−0.1724 (3)0.3564 (2)0.62606 (11)0.0499 (5)
H7−0.29120.38280.60140.060*
C110.4155 (3)0.1931 (2)0.78350 (11)0.0494 (5)
H110.38280.12270.75590.059*
C10.0535 (4)0.4931 (2)0.55591 (11)0.0502 (5)
C120.5905 (4)0.1889 (3)0.81914 (14)0.0607 (6)
H120.67340.11490.81620.073*
C20.2261 (5)0.5119 (3)0.52052 (13)0.0654 (7)
H20.24770.59080.49770.078*
C30.3657 (5)0.4116 (3)0.51958 (14)0.0723 (7)
H30.48150.42270.49520.087*
C130.6420 (4)0.2934 (3)0.85879 (13)0.0655 (7)
H130.75940.29050.88290.079*
C140.5199 (4)0.4020 (3)0.86281 (13)0.0641 (7)
H140.55670.47340.88920.077*
C40.3375 (4)0.2965 (3)0.55369 (14)0.0680 (7)
H40.43340.22970.55250.082*
H10.074 (3)0.225 (3)0.7406 (12)0.037 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0896 (2)0.05464 (17)0.0827 (2)0.01486 (15)0.01432 (17)0.01807 (14)
O10.0611 (10)0.0400 (8)0.0689 (10)−0.0133 (7)−0.0136 (8)0.0087 (7)
O20.0677 (10)0.0342 (8)0.0891 (12)0.0036 (8)−0.0200 (10)−0.0011 (8)
N10.0487 (10)0.0311 (8)0.0515 (9)−0.0032 (8)−0.0056 (8)−0.0002 (7)
C50.0618 (15)0.0547 (13)0.0581 (13)0.0042 (12)−0.0126 (12)−0.0037 (11)
C60.0500 (11)0.0458 (11)0.0453 (10)−0.0031 (11)−0.0122 (8)−0.0024 (9)
C150.0584 (13)0.0455 (11)0.0520 (11)0.0046 (10)−0.0047 (11)−0.0052 (9)
C90.0473 (10)0.0332 (10)0.0515 (11)−0.0039 (8)−0.0011 (9)0.0071 (8)
C80.0418 (10)0.0375 (10)0.0609 (12)−0.0063 (9)−0.0036 (8)0.0089 (10)
C100.0442 (10)0.0386 (10)0.0392 (9)−0.0030 (8)0.0020 (8)0.0079 (8)
C70.0459 (11)0.0448 (11)0.0589 (12)−0.0055 (10)−0.0150 (9)0.0106 (10)
C110.0517 (12)0.0425 (11)0.0541 (12)0.0011 (9)0.0042 (9)0.0029 (9)
C10.0604 (12)0.0462 (11)0.0441 (10)−0.0012 (9)−0.0009 (10)−0.0020 (10)
C120.0477 (12)0.0615 (14)0.0730 (16)0.0100 (11)0.0029 (11)0.0138 (12)
C20.0782 (17)0.0652 (16)0.0528 (13)−0.0086 (14)0.0095 (12)−0.0001 (12)
C30.0631 (16)0.091 (2)0.0629 (15)−0.0026 (16)0.0099 (14)−0.0143 (14)
C130.0525 (13)0.0838 (19)0.0602 (13)0.0019 (15)−0.0100 (12)0.0111 (13)
C140.0696 (16)0.0679 (16)0.0548 (13)−0.0056 (14)−0.0149 (12)−0.0083 (12)
C40.0624 (15)0.0748 (17)0.0669 (15)0.0141 (13)−0.0095 (15)−0.0156 (14)

Geometric parameters (Å, °)

Br1—C11.896 (2)C8—H80.9800
O1—C81.433 (3)C10—C111.388 (3)
O1—C71.437 (3)C7—H70.9800
O2—C91.219 (3)C11—C121.384 (4)
N1—C91.338 (3)C11—H110.9300
N1—C101.414 (3)C1—C21.380 (4)
N1—H10.78 (3)C12—C131.370 (4)
C5—C41.384 (4)C12—H120.9300
C5—C61.392 (3)C2—C31.375 (5)
C5—H50.9300C2—H20.9300
C6—C11.390 (3)C3—C41.363 (5)
C6—C71.481 (3)C3—H30.9300
C15—C101.385 (3)C13—C141.366 (4)
C15—C141.397 (4)C13—H130.9300
C15—H150.9300C14—H140.9300
C9—C81.503 (3)C4—H40.9300
C8—C71.481 (3)
C8—O1—C762.11 (14)O1—C7—H7114.9
C9—N1—C10127.97 (19)C6—C7—H7114.9
C9—N1—H1115.1 (18)C8—C7—H7114.9
C10—N1—H1116.8 (18)C12—C11—C10120.6 (2)
C4—C5—C6121.0 (3)C12—C11—H11119.7
C4—C5—H5119.5C10—C11—H11119.7
C6—C5—H5119.5C2—C1—C6121.9 (2)
C1—C6—C5117.4 (2)C2—C1—Br1118.96 (19)
C1—C6—C7120.9 (2)C6—C1—Br1119.09 (17)
C5—C6—C7121.7 (2)C13—C12—C11120.1 (2)
C10—C15—C14118.9 (2)C13—C12—H12119.9
C10—C15—H15120.6C11—C12—H12119.9
C14—C15—H15120.6C3—C2—C1118.7 (3)
O2—C9—N1125.9 (2)C3—C2—H2120.6
O2—C9—C8118.1 (2)C1—C2—H2120.6
N1—C9—C8116.05 (19)C4—C3—C2121.2 (3)
O1—C8—C759.09 (14)C4—C3—H3119.4
O1—C8—C9118.74 (18)C2—C3—H3119.4
C7—C8—C9120.07 (19)C14—C13—C12119.7 (2)
O1—C8—H8115.7C14—C13—H13120.2
C7—C8—H8115.7C12—C13—H13120.2
C9—C8—H8115.7C13—C14—C15121.3 (2)
C15—C10—C11119.4 (2)C13—C14—H14119.3
C15—C10—N1123.5 (2)C15—C14—H14119.3
C11—C10—N1117.1 (2)C3—C4—C5119.7 (3)
O1—C7—C6117.2 (2)C3—C4—H4120.1
O1—C7—C858.80 (14)C5—C4—H4120.1
C6—C7—C8124.15 (18)
C4—C5—C6—C1−1.3 (3)C9—C8—C7—O1107.5 (2)
C4—C5—C6—C7175.4 (2)O1—C8—C7—C6−103.6 (2)
C10—N1—C9—O2−3.1 (4)C9—C8—C7—C63.9 (4)
C10—N1—C9—C8176.5 (2)C15—C10—C11—C122.1 (3)
C7—O1—C8—C9−109.7 (2)N1—C10—C11—C12−176.9 (2)
O2—C9—C8—O1167.2 (2)C5—C6—C1—C20.1 (3)
N1—C9—C8—O1−12.5 (3)C7—C6—C1—C2−176.7 (2)
O2—C9—C8—C798.3 (3)C5—C6—C1—Br1−178.98 (16)
N1—C9—C8—C7−81.4 (3)C7—C6—C1—Br14.2 (3)
C14—C15—C10—C11−1.2 (3)C10—C11—C12—C13−1.4 (4)
C14—C15—C10—N1177.8 (2)C6—C1—C2—C31.1 (4)
C9—N1—C10—C1514.1 (3)Br1—C1—C2—C3−179.8 (2)
C9—N1—C10—C11−166.9 (2)C1—C2—C3—C4−1.2 (4)
C8—O1—C7—C6115.3 (2)C11—C12—C13—C14−0.2 (4)
C1—C6—C7—O1−177.83 (19)C12—C13—C14—C151.1 (4)
C5—C6—C7—O15.5 (3)C10—C15—C14—C13−0.4 (4)
C1—C6—C7—C8−108.6 (2)C2—C3—C4—C50.0 (4)
C5—C6—C7—C874.7 (3)C6—C5—C4—C31.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.79 (3)2.22 (3)2.971 (2)161 (2)
C15—H15···O1ii0.932.593.442 (3)153

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2664).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Flisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247–6254.
  • He, L. (2009). Acta Cryst. E65, o2052. [PMC free article] [PubMed]
  • He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.
  • Zhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography