PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1587.
Published online 2009 November 14. doi:  10.1107/S1600536809047618
PMCID: PMC2972054

[(Z)-O-Ethyl-N-(p-tol­yl)thio­carbamato-κS](triphenyl­phosphine)-κP]gold(I)

Abstract

The title compound, [Au(C10H12NOS)(C18H15P)], features a linear S,P-donor set about the central Au atom. The thio­carbamate ligand is orientated to place the aryl ring in close proximity to Au [the closest Au(...)C distance is 3.238 (4) Å], which results in a small deviation from the ideal linear P—Au—S geometry.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see Hall et al. (1993 [triangle]). For gold(...)π interactions, see: Tiekink & Zukerman-Schpector (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1587-scheme1.jpg

Experimental

Crystal data

  • [Au(C10H12NOS)(C18H15P)]
  • M r = 653.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1587-efi1.jpg
  • a = 8.6676 (5) Å
  • b = 12.1397 (6) Å
  • c = 13.2378 (7) Å
  • α = 65.482 (1)°
  • β = 89.765 (1)°
  • γ = 80.635 (1)°
  • V = 1247.30 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.07 mm−1
  • T = 223 K
  • 0.31 × 0.16 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.311, T max = 1
  • 8852 measured reflections
  • 5702 independent reflections
  • 5380 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.074
  • S = 1.04
  • 5702 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 1.41 e Å−3
  • Δρmin = −0.98 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047618/lh2951sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047618/lh2951Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

supplementary crystallographic information

Comment

Phosphinegold(I) thiocarbamides have proved relatively easy to crystallize making systematic structural investigations possible, such as monitoring the influence of phosphine and/or thiocarbamato ligands upon supramolecular aggregation patterns (Ho & Tiekink, 2007; Kuan et al., 2008) and luminescence (Ho et al. 2006). During these studies, the title compound, Ph3Au[SC(OEt)N(p-tolyl)], (I), was synthesized.

The gold atom in (I) exists in the expected linear geometry defined by a S,P donor set, Table 1 and Fig. 1. While the thiocarbamato anion shows the expected features, i.e. a Z-conformation about the C1-N1 bond and thiolate character [C1–S1 is 1.759 (3) Å and C1-N1 is 1.265 (5) Å], its orientation within the molecule is unusual. Normally in these type of phosphinegold(I) compounds, the orientation of the thiocarbamato ligand has the O1 atom in close proximity to the Au atom. However, in (I), the aryl ring is orientated towards Au [closest Au···C2 distance = 3.238 (4) Å, and Au···Cg(C2—C7) = 3.60 Å]. The close approach of the aryl ring is responsible for the small deviation from linearity of the S,P donor set, Table 1.

Electronic and steric effects have been cited as reasons for the variation in the coordination modes of thiocarbamato ligands in their phosphinegold(I) compounds, with N-bound p-tolyl groups known to promote Au···π interactions (Kuan et al., 2008).

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(p-tolyl) in the presence of base (Hall et al., 1993).

Refinement

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.41 and 0.98 e Å-3, respectively, were located 0.83 Å and 0.81 Å, respectively, from the Au atom.

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Crystal data

[Au(C10H12NOS)(C18H15P)]Z = 2
Mr = 653.50F(000) = 640
Triclinic, P1Dx = 1.740 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.6676 (5) ÅCell parameters from 6912 reflections
b = 12.1397 (6) Åθ = 2.4–29.9°
c = 13.2378 (7) ŵ = 6.07 mm1
α = 65.482 (1)°T = 223 K
β = 89.765 (1)°Block, colourless
γ = 80.635 (1)°0.31 × 0.16 × 0.16 mm
V = 1247.30 (12) Å3

Data collection

Bruker SMART CCD diffractometer5702 independent reflections
Radiation source: fine-focus sealed tube5380 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→11
Tmin = 0.311, Tmax = 1k = −14→15
8852 measured reflectionsl = −11→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0515P)2 + 0.0366P] where P = (Fo2 + 2Fc2)/3
5702 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = −0.98 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au0.133778 (13)0.439781 (10)0.172306 (9)0.03279 (6)
S1−0.03428 (11)0.61652 (8)0.06097 (8)0.03801 (18)
P10.28847 (10)0.26188 (8)0.28627 (7)0.03056 (17)
O1−0.1531 (3)0.8119 (2)0.0773 (2)0.0404 (5)
N10.0908 (4)0.7459 (3)0.1633 (3)0.0434 (7)
C1−0.0164 (4)0.7286 (3)0.1099 (3)0.0341 (6)
C20.2387 (4)0.6696 (3)0.2015 (3)0.0368 (7)
C30.3647 (5)0.6845 (4)0.1339 (4)0.0471 (8)
H30.34820.73870.05810.056*
C40.5130 (5)0.6205 (4)0.1775 (4)0.0473 (9)
H40.59660.63260.13080.057*
C50.5420 (4)0.5380 (3)0.2896 (3)0.0405 (8)
C60.4168 (5)0.5244 (3)0.3562 (3)0.0408 (8)
H60.43310.47050.43220.049*
C70.2677 (4)0.5889 (3)0.3127 (3)0.0400 (8)
H70.18440.57770.35960.048*
C80.7037 (5)0.4652 (4)0.3367 (4)0.0589 (11)
H8A0.72520.46450.40890.088*
H8B0.78100.50290.28670.088*
H8C0.70890.38150.34490.088*
C9−0.1632 (4)0.9157 (3)0.1064 (3)0.0400 (7)
H9A−0.09210.97060.06390.048*
H9B−0.13520.88720.18590.048*
C10−0.3300 (5)0.9812 (4)0.0780 (4)0.0523 (10)
H10A−0.34321.05160.09640.078*
H10B−0.39880.92560.12030.078*
H10C−0.35581.0090−0.00090.078*
C110.4880 (4)0.2449 (3)0.2467 (3)0.0338 (6)
C120.5368 (4)0.3463 (3)0.1625 (3)0.0399 (7)
H120.46570.42040.12590.048*
C130.6905 (5)0.3367 (4)0.1334 (4)0.0540 (10)
H130.72410.40500.07780.065*
C140.7948 (5)0.2275 (5)0.1856 (4)0.0569 (11)
H140.89910.22210.16580.068*
C150.7465 (5)0.1256 (4)0.2670 (4)0.0559 (11)
H150.81750.05120.30190.067*
C160.5923 (5)0.1342 (4)0.2969 (3)0.0439 (8)
H160.55870.06510.35120.053*
C170.2276 (4)0.1190 (3)0.3033 (3)0.0321 (6)
C180.1892 (4)0.0357 (3)0.4049 (3)0.0383 (7)
H180.19240.05350.46750.046*
C190.1460 (5)−0.0739 (3)0.4155 (4)0.0444 (8)
H190.1196−0.12990.48460.053*
C200.1424 (4)−0.0992 (3)0.3228 (4)0.0456 (8)
H200.1145−0.17330.32910.055*
C210.1794 (5)−0.0163 (4)0.2211 (4)0.0453 (8)
H210.1759−0.03440.15870.054*
C220.2216 (4)0.0927 (3)0.2101 (3)0.0400 (8)
H220.24610.14900.14040.048*
C230.2960 (4)0.2546 (3)0.4263 (3)0.0329 (6)
C240.1596 (4)0.3020 (3)0.4609 (3)0.0400 (7)
H240.06710.33310.41380.048*
C250.1605 (5)0.3033 (4)0.5653 (3)0.0483 (9)
H250.06780.33410.58920.058*
C260.2956 (5)0.2601 (4)0.6341 (3)0.0496 (9)
H260.29600.26430.70340.059*
C270.4302 (6)0.2107 (4)0.6016 (3)0.0505 (9)
H270.52140.17790.65000.061*
C280.4315 (4)0.2093 (3)0.4973 (3)0.0421 (8)
H280.52450.17740.47450.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.03425 (8)0.02878 (8)0.03499 (9)−0.00471 (5)0.00208 (5)−0.01337 (6)
S10.0414 (4)0.0333 (4)0.0401 (4)−0.0021 (3)−0.0074 (3)−0.0178 (4)
P10.0324 (4)0.0270 (4)0.0332 (4)−0.0056 (3)0.0028 (3)−0.0134 (3)
O10.0382 (12)0.0349 (12)0.0474 (14)0.0010 (10)−0.0073 (10)−0.0193 (11)
N10.0396 (16)0.0362 (15)0.0541 (19)0.0010 (13)−0.0107 (14)−0.0214 (14)
C10.0376 (16)0.0299 (15)0.0355 (16)−0.0050 (13)0.0019 (13)−0.0147 (13)
C20.0347 (16)0.0320 (16)0.0493 (19)−0.0045 (13)−0.0058 (14)−0.0229 (15)
C30.048 (2)0.0419 (19)0.048 (2)−0.0037 (16)−0.0011 (17)−0.0176 (17)
C40.042 (2)0.048 (2)0.053 (2)−0.0086 (17)0.0077 (17)−0.0216 (18)
C50.0341 (16)0.0389 (18)0.056 (2)−0.0046 (14)−0.0038 (15)−0.0279 (17)
C60.0454 (19)0.0317 (16)0.0439 (19)−0.0042 (15)−0.0082 (15)−0.0153 (15)
C70.0358 (17)0.0353 (17)0.051 (2)−0.0082 (14)0.0031 (15)−0.0194 (16)
C80.041 (2)0.058 (3)0.080 (3)0.0024 (19)−0.013 (2)−0.034 (2)
C90.0420 (18)0.0328 (16)0.0432 (19)0.0000 (14)0.0002 (14)−0.0162 (15)
C100.047 (2)0.046 (2)0.056 (2)0.0086 (17)−0.0033 (18)−0.0202 (19)
C110.0319 (15)0.0360 (16)0.0370 (16)−0.0052 (13)0.0041 (12)−0.0190 (14)
C120.0380 (17)0.0413 (18)0.0412 (18)−0.0096 (14)0.0066 (14)−0.0173 (15)
C130.046 (2)0.065 (3)0.059 (3)−0.0207 (19)0.0164 (19)−0.029 (2)
C140.039 (2)0.082 (3)0.059 (3)−0.010 (2)0.0087 (19)−0.039 (3)
C150.046 (2)0.066 (3)0.053 (2)0.009 (2)0.0006 (18)−0.028 (2)
C160.045 (2)0.0393 (19)0.045 (2)−0.0010 (15)0.0049 (16)−0.0185 (16)
C170.0294 (14)0.0291 (15)0.0396 (17)−0.0053 (12)−0.0002 (12)−0.0161 (13)
C180.0412 (17)0.0340 (17)0.0427 (18)−0.0081 (14)0.0037 (14)−0.0186 (15)
C190.045 (2)0.0335 (17)0.051 (2)−0.0118 (15)0.0093 (16)−0.0134 (16)
C200.0419 (19)0.0358 (18)0.067 (2)−0.0097 (15)0.0022 (17)−0.0280 (18)
C210.047 (2)0.047 (2)0.053 (2)−0.0094 (16)−0.0005 (16)−0.0313 (18)
C220.0443 (19)0.0389 (18)0.0398 (18)−0.0078 (15)−0.0010 (15)−0.0191 (15)
C230.0380 (16)0.0286 (15)0.0352 (16)−0.0098 (12)0.0043 (13)−0.0149 (13)
C240.0390 (17)0.0413 (18)0.0453 (19)−0.0116 (14)0.0076 (14)−0.0222 (16)
C250.054 (2)0.052 (2)0.049 (2)−0.0184 (18)0.0194 (18)−0.0282 (19)
C260.071 (3)0.050 (2)0.0357 (18)−0.026 (2)0.0125 (18)−0.0202 (17)
C270.065 (3)0.041 (2)0.0396 (19)−0.0112 (18)−0.0068 (17)−0.0106 (16)
C280.0433 (19)0.0403 (18)0.0423 (19)−0.0064 (15)0.0006 (15)−0.0171 (15)

Geometric parameters (Å, °)

Au—S12.2964 (9)C12—C131.385 (5)
Au—P12.2601 (9)C12—H120.9400
S1—C11.759 (3)C13—C141.381 (7)
P1—C111.810 (3)C13—H130.9400
P1—C171.819 (3)C14—C151.387 (7)
P1—C231.820 (3)C14—H140.9400
O1—C11.365 (4)C15—C161.392 (6)
O1—C91.453 (4)C15—H150.9400
N1—C11.265 (5)C16—H160.9400
N1—C21.409 (4)C17—C181.386 (5)
C2—C71.385 (5)C17—C221.400 (5)
C2—C31.395 (5)C18—C191.392 (5)
C3—C41.378 (6)C18—H180.9400
C3—H30.9400C19—C201.386 (6)
C4—C51.400 (6)C19—H190.9400
C4—H40.9400C20—C211.380 (6)
C5—C61.383 (6)C20—H200.9400
C5—C81.510 (5)C21—C221.380 (5)
C6—C71.385 (5)C21—H210.9400
C6—H60.9400C22—H220.9400
C7—H70.9400C23—C241.390 (5)
C8—H8A0.9700C23—C281.391 (5)
C8—H8B0.9700C24—C251.389 (5)
C8—H8C0.9700C24—H240.9400
C9—C101.498 (5)C25—C261.374 (6)
C9—H9A0.9800C25—H250.9400
C9—H9B0.9800C26—C271.374 (6)
C10—H10A0.9700C26—H260.9400
C10—H10B0.9700C27—C281.388 (6)
C10—H10C0.9700C27—H270.9400
C11—C161.390 (5)C28—H280.9400
C11—C121.401 (5)
P1—Au—S1177.07 (3)C13—C12—C11119.6 (4)
C1—S1—Au107.44 (12)C13—C12—H12120.2
C11—P1—C17103.77 (15)C11—C12—H12120.2
C11—P1—C23107.57 (15)C14—C13—C12120.4 (4)
C17—P1—C23104.35 (15)C14—C13—H13119.8
C11—P1—Au114.08 (12)C12—C13—H13119.8
C17—P1—Au117.45 (11)C13—C14—C15120.4 (4)
C23—P1—Au108.81 (11)C13—C14—H14119.8
C1—O1—C9116.6 (3)C15—C14—H14119.8
C1—N1—C2125.5 (3)C14—C15—C16119.7 (4)
N1—C1—O1118.6 (3)C14—C15—H15120.2
N1—C1—S1134.4 (3)C16—C15—H15120.2
O1—C1—S1107.0 (2)C11—C16—C15120.1 (4)
C7—C2—C3118.0 (3)C11—C16—H16119.9
C7—C2—N1119.7 (3)C15—C16—H16119.9
C3—C2—N1121.7 (3)C18—C17—C22119.4 (3)
C4—C3—C2120.6 (4)C18—C17—P1122.3 (3)
C4—C3—H3119.7C22—C17—P1118.3 (3)
C2—C3—H3119.7C17—C18—C19120.9 (3)
C3—C4—C5121.4 (4)C17—C18—H18119.6
C3—C4—H4119.3C19—C18—H18119.6
C5—C4—H4119.3C20—C19—C18119.0 (4)
C6—C5—C4117.6 (3)C20—C19—H19120.5
C6—C5—C8120.9 (4)C18—C19—H19120.5
C4—C5—C8121.5 (4)C21—C20—C19120.5 (3)
C5—C6—C7121.0 (4)C21—C20—H20119.8
C5—C6—H6119.5C19—C20—H20119.8
C7—C6—H6119.5C20—C21—C22120.7 (4)
C2—C7—C6121.4 (4)C20—C21—H21119.6
C2—C7—H7119.3C22—C21—H21119.6
C6—C7—H7119.3C21—C22—C17119.5 (4)
C5—C8—H8A109.5C21—C22—H22120.2
C5—C8—H8B109.5C17—C22—H22120.2
H8A—C8—H8B109.5C24—C23—C28119.1 (3)
C5—C8—H8C109.5C24—C23—P1117.3 (3)
H8A—C8—H8C109.5C28—C23—P1123.5 (3)
H8B—C8—H8C109.5C25—C24—C23119.7 (4)
O1—C9—C10106.2 (3)C25—C24—H24120.2
O1—C9—H9A110.5C23—C24—H24120.2
C10—C9—H9A110.5C26—C25—C24120.7 (4)
O1—C9—H9B110.5C26—C25—H25119.7
C10—C9—H9B110.5C24—C25—H25119.7
H9A—C9—H9B108.7C27—C26—C25120.0 (4)
C9—C10—H10A109.5C27—C26—H26120.0
C9—C10—H10B109.5C25—C26—H26120.0
H10A—C10—H10B109.5C26—C27—C28120.0 (4)
C9—C10—H10C109.5C26—C27—H27120.0
H10A—C10—H10C109.5C28—C27—H27120.0
H10B—C10—H10C109.5C27—C28—C23120.4 (4)
C16—C11—C12119.7 (3)C27—C28—H28119.8
C16—C11—P1121.7 (3)C23—C28—H28119.8
C12—C11—P1118.6 (3)
C2—N1—C1—O1−179.2 (3)P1—C11—C16—C15−177.8 (3)
C2—N1—C1—S1−0.6 (7)C14—C15—C16—C11−1.1 (6)
C9—O1—C1—N10.6 (5)C11—P1—C17—C18116.3 (3)
C9—O1—C1—S1−178.4 (2)C23—P1—C17—C183.7 (3)
Au—S1—C1—N125.4 (4)Au—P1—C17—C18−116.8 (3)
Au—S1—C1—O1−155.85 (19)C11—P1—C17—C22−62.9 (3)
C1—N1—C2—C7−102.7 (5)C23—P1—C17—C22−175.5 (3)
C1—N1—C2—C386.4 (5)Au—P1—C17—C2264.0 (3)
C7—C2—C3—C4−0.1 (6)C22—C17—C18—C190.5 (5)
N1—C2—C3—C4171.0 (4)P1—C17—C18—C19−178.8 (3)
C2—C3—C4—C50.8 (6)C17—C18—C19—C200.3 (6)
C3—C4—C5—C6−1.2 (6)C18—C19—C20—C21−0.7 (6)
C3—C4—C5—C8178.3 (4)C19—C20—C21—C220.4 (6)
C4—C5—C6—C71.0 (6)C20—C21—C22—C170.4 (6)
C8—C5—C6—C7−178.5 (4)C18—C17—C22—C21−0.8 (5)
C3—C2—C7—C6−0.1 (5)P1—C17—C22—C21178.5 (3)
N1—C2—C7—C6−171.4 (4)C11—P1—C23—C24160.8 (3)
C5—C6—C7—C2−0.4 (6)C17—P1—C23—C24−89.4 (3)
C1—O1—C9—C10−171.3 (3)Au—P1—C23—C2436.7 (3)
C17—P1—C11—C16−41.1 (3)C11—P1—C23—C28−16.4 (3)
C23—P1—C11—C1669.1 (3)C17—P1—C23—C2893.4 (3)
Au—P1—C11—C16−170.1 (3)Au—P1—C23—C28−140.5 (3)
C17—P1—C11—C12138.3 (3)C28—C23—C24—C25−0.1 (5)
C23—P1—C11—C12−111.5 (3)P1—C23—C24—C25−177.4 (3)
Au—P1—C11—C129.3 (3)C23—C24—C25—C261.1 (6)
C16—C11—C12—C13−2.7 (5)C24—C25—C26—C27−2.4 (6)
P1—C11—C12—C13177.8 (3)C25—C26—C27—C282.7 (6)
C11—C12—C13—C141.0 (6)C26—C27—C28—C23−1.7 (6)
C12—C13—C14—C150.6 (7)C24—C23—C28—C270.4 (5)
C13—C14—C15—C16−0.6 (7)P1—C23—C28—C27177.6 (3)
C12—C11—C16—C152.7 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2951).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tiekink, E. R. T. & J. Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176–1186.
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography