PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3261–o3262.
Published online 2009 November 28. doi:  10.1107/S1600536809050430
PMCID: PMC2972047

5-(4-Cyano-5-dicyano­methyl­ene-2,2-dimethyl-2,5-dihydro-3-fur­yl)-3-(1-methyl-1,4-dihydro­pyridin-4-yl­idene)pent-4-enyl 3,5-bis­(benz­yloxy)benzoate acetonitrile 0.25-solvate: a synchrotron radiation study

Abstract

The title compound, C42H36N4O5·0.25CH3CN, crystallizes with a partial twofold disordered (1/4) acetonitrile solvent of crystallization. The linking atoms to the 3,5-bis­(benz­yloxy)benzoic acid are disordered between two conformations in the ratio 0.780 (6):0.220 (6). In the crystal, the mol­ecules pack using mainly C—H(...)N(cyano) inter­actions coupled with weak C—H(...)O(ether) inter­actions and C—H(...)π inter­actions. A brief comparison is made between a conventional and this synchrotron data collection.

Related literature

For general background, see Kay et al. (2004 [triangle]); Marder et al. (1993 [triangle]). For related structures, see: Kay et al. (2008 [triangle]), Gainsford et al. (2007 [triangle], 2008 [triangle]); Kim et al. (2007 [triangle]) For synthetic data, see: Clarke et al. (2009 [triangle]). For details of the PX1 beamline, see: McPhillips et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3261-scheme1.jpg

Experimental

Crystal data

  • C42H36N4O5·0.25C2H3N
  • M r = 687.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3261-efi5.jpg
  • a = 29.374 (6) Å
  • b = 15.825 (3) Å
  • c = 16.317 (3) Å
  • β = 108.61 (3)°
  • V = 7188 (3) Å3
  • Z = 8
  • Synchrotron radiation
  • λ = 0.77300 Å
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.26 × 0.08 × 0.04 mm

Data collection

  • ADSC Quantum 210r CCD diffractometer
  • 38733 measured reflections
  • 5381 independent reflections
  • 4076 reflections with I > 2σ(I)
  • R int = 0.098
  • θmax = 26.0°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.167
  • S = 1.04
  • 5381 reflections
  • 482 parameters
  • H-atom parameters constrained
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: ADSC Quantum 210r software (ADSC, 2009 [triangle]); cell refinement: XDS (Kabsch, 1993 [triangle]); data reduction: XDS, locally modified software and XPREP (Bruker, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
Inter­planar angles and SIGP values for the planar entities (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050430/sj2693sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050430/sj2693Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The structural study was supported by the New Zealand Synchrotron Group and the Australian Synchrotron, Victoria, Australia. We thank Drs Adams, Huyton and Williamson of the Australian Synchrotron for their assistance and the New Zealand Foundation for Research, Science and Technology and New Zealand Pharmaceuticals Ltd for financial support. The diffraction data was collected on the PX1 beamline (McPhillips et al., 2002 [triangle]) at the Australian Synchrotron, Victoria, Australia. The views expressed herein are those of the authors and are not necessarily those of the owner or operator of the Australian Synchrotron. We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance with the conventional data collection.

supplementary crystallographic information

Comment

The title compound (I) was synthesized as part of a continuing research programme involving the development of organic nonlinear optical (NLO) chromophores. Due to the highly polar nature of these compounds they have a strong tendency to aggregate, a phenomenon that often leads to a reduction in the macroscopic nonlinearity. We have previously reported the crystallographic parameters for two chromophores containing a quinolinylidene donor coupled to a cyanodicyanomethylidenedihydrofuran (CDFP) electron acceptor group (Gainsford et al., 2008). In both instances an examination of the unit cell packing showed plane to plane stacking of the chromophores via the interaction of the donor end of one molecule with the acceptor end of another. This is clear evidence for potentially deleterious H-aggregation occurring between the compounds. However, it has been reported that the introduction of bulky substituents near the centre of NLO chromophores leads to a significant reduction in the observed aggregation (Kim et al., 2007). Consequently we were interested to make modifications to the core structure of our compounds to see whether the introduction of a bulky 3,5-bis(benzyloxy) benzoate group would lead to any change in the unit cell packing. We report here on the structural properties of a chromophore containing a pyridinylidene donor, CDFP acceptor and bulky side group. While a direct comparison between the compounds studied earlier (Gainsford et al., 2008) and one also containing a quinolinylidene donor would be preferable, this wasn't feasible from synthetic viewpoint. An initial report based on the earlier conventional data collection has been given (Kay et al., 2008).

The asymmetric unit of crystals of (I) contains one independent copy of the molecule and a partial (1/4) acetonitrile molecule disordered around a twofold symmetry site (Figure 1). The linking atoms to the 3,5-bis-benzyloxy-benzoic acid (C20,C21,O2) are disordered over two conformations with refined occupancies of 0.780:0.220 (6). The CDFP ring (atoms C4/C5/O1/C6/C7) and the cyano groups appended to C2 are coplanar (Table 2). The geometric parameters are consistent with the localized electron configuration shown in the scheme with ony subtle differences to the closely related quinoline molecules (NAJKUT & NOJLAA, Gainsford et al., 2008); the similarity is reflected in the bond length alternation (Marder et al., 1993) BLA values of -0.042 (here) and -0.015 & -0.042 respectively. The interplanar angles (Table 2) show the overall moleculear non-planarity of the adjacent planar entities.

The molecular packing is provided by mainly CH···N(cyano) interactions but also a C–H···O interaction with one benzolyoxy oxygen and C—H ···π crosslinks (Figure 2). Two adjacent molecules are linked through the methyl hydrogen atoms (entries 1 & 2, Table 1) and extended into layers parallel to the (3,0,1) plane via the H16, H17 & H19C (entries 3,4 & 5) and the C–H···O5 (entry 6) interactions. These layers are crosslinked via methyl H8B interaction with phenyl ring C30—C35 (entry 7, Table 1; Figure 2).

An opportunity arose to recollect data on the Australian synchrotron, which is the data presented here. The conventional laboratory results are quite similar but that data did not support refinement of the partial acetonitrile solvent molecule. There were about 2.5 times more observed data in the synchrotron data set (collected in 5% of the conventional time) giving smaller su (by ~70%) values, but overall both datasets gave similar agreement factors. Given the overall agreement data statistics (see exptl_refinement) and the different crystal used, further comparison seems unwarranted.

Experimental

The title compound was synthesized by a published procedure (Clarke et al., 2009). Black crystals suitable for X-ray structure determination were grown in acetonitrile by slow evaporation of the solvent at room temperature.

Refinement

A total of 12 outlier reflections were omitted from the processed set, from which 16 intense reflections with poor internal agreement had been removed. An examination of the data did not establish definitively that these latter data, with Fo >> Fc, represented data from a multiple crystal fragment or were subject to twinning.

The acetonitrile solvent is disordered with the N atom on a 2 fold site; the occupancy was determined with an average isotropic U & then fixed at 0.25 with a common Uiso which refined to 0.082 (2) Å2. Atoms C20, C21 & O2 were found to be in two conformations which refined to occupancies of 0.780:0.220 (6); the minor conformer atoms (C20A,C20B & O2B) were refined isotropically to a common final value of 0.019 (2) Å2. The final difference minimum & maxima (-0.5 & 0.90 e/Å-3) are close to atoms N2S & C1S of the disordered acetonitrile carbon indicating imperfect modelling of the disorder.

All H atoms bound to carbon were constrained to their expected geometries (C–H 0.98, 0.99, 1.00 Å). Methyl H atoms were refined with Uiso = 1.5Ueq(C); all other H atoms were refined with Uiso = 1.2Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level. Only the major conformation for atoms C20, C21 & O2 are shown; hydrogen atoms on the acetonitrile are omitted.
Fig. 2.
Packing diagram (Mercury, Macrae et al.,(2006)) of the unit cell Only H atoms involved in significant interactions are shown. Contact atoms are shown as balls; a limited set of labels are given (see Table 2). Symmetry codes: (i) x, 1 - y, 1/2 + z (ii) ...

Crystal data

C42H36N4O5·0.25C2H3NZ = 8
Mr = 687.01F(000) = 2892
Monoclinic, C2/cDx = 1.270 Mg m3
Hall symbol: -C 2ycSynchrotron radiation, λ = 0.77300 Å
a = 29.374 (6) ŵ = 0.08 mm1
b = 15.825 (3) ÅT = 100 K
c = 16.317 (3) ÅNeedle, black
β = 108.61 (3)°0.26 × 0.08 × 0.04 mm
V = 7188 (3) Å3

Data collection

ADSC Quantum 210r CCD diffractometer4076 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.098
graphiteθmax = 26.0°, θmin = 1.6°
ω scansh = −33→33
38733 measured reflectionsk = −17→17
5381 independent reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.167w = 1/[σ2(Fo2) + (0.0862P)2 + 13.1795P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5381 reflectionsΔρmax = 0.91 e Å3
482 parametersΔρmin = −0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0128 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.17400 (7)0.94070 (11)0.02908 (12)0.0290 (5)
O30.11459 (9)0.63005 (13)0.23553 (15)0.0475 (7)
O40.03753 (7)0.32537 (12)0.37018 (13)0.0330 (5)
O50.00478 (8)0.60170 (12)0.42819 (14)0.0361 (5)
N10.22209 (10)0.92896 (14)−0.22501 (16)0.0329 (6)
N20.19059 (12)1.12873 (16)−0.0685 (2)0.0538 (9)
N30.19800 (10)0.73140 (14)−0.16212 (16)0.0324 (6)
N40.21359 (9)0.36102 (13)−0.10782 (15)0.0278 (6)
C10.21038 (11)0.94562 (16)−0.16563 (19)0.0256 (7)
C20.19611 (11)0.96943 (16)−0.09403 (18)0.0267 (7)
C30.19290 (12)1.05714 (18)−0.0795 (2)0.0354 (8)
C40.17049 (10)0.79170 (16)0.02949 (17)0.0241 (6)
C50.16325 (11)0.86922 (16)0.07822 (18)0.0255 (7)
C60.18610 (10)0.91040 (16)−0.03864 (18)0.0257 (7)
C70.18566 (10)0.82216 (16)−0.04015 (17)0.0234 (6)
C80.11152 (12)0.88153 (18)0.0772 (2)0.0331 (7)
H8A0.10250.83520.10880.050*
H8B0.09000.88180.01720.050*
H8C0.10880.93550.10470.050*
C90.19856 (12)0.87367 (17)0.16911 (18)0.0335 (8)
H9A0.19680.92960.19370.050*
H9B0.23120.86390.16730.050*
H9C0.19050.83040.20510.050*
C100.19329 (11)0.77332 (16)−0.10791 (18)0.0243 (7)
C110.16310 (11)0.71102 (16)0.05218 (18)0.0292 (7)
H110.14960.70330.09740.035*
C120.17441 (11)0.63825 (16)0.01213 (18)0.0265 (7)
H120.19220.6482−0.02630.032*
C130.16333 (13)0.55628 (17)0.0211 (2)0.0395 (9)
C140.18049 (11)0.48951 (17)−0.02358 (19)0.0305 (7)
C150.20573 (12)0.50609 (17)−0.08233 (19)0.0331 (8)
H150.21140.5630−0.09470.040*
C160.22209 (11)0.44259 (16)−0.12181 (19)0.0305 (7)
H160.23980.4560−0.15980.037*
C170.18892 (11)0.34164 (16)−0.05347 (18)0.0282 (7)
H170.18270.2841−0.04440.034*
C180.17278 (11)0.40315 (17)−0.01131 (19)0.0294 (7)
H180.15590.38750.02730.035*
C190.23173 (14)0.29362 (18)−0.1516 (2)0.0420 (9)
H19A0.26520.2809−0.11830.063*
H19B0.23000.3125−0.20980.063*
H19C0.21210.2427−0.15590.063*
C220.10633 (14)0.55612 (19)0.2443 (2)0.0465 (9)
C230.07702 (11)0.52344 (18)0.29680 (18)0.0309 (7)
C240.07207 (11)0.43685 (18)0.30567 (18)0.0300 (7)
H240.08670.39790.27760.036*
C250.04542 (10)0.40880 (17)0.35614 (18)0.0262 (7)
C260.02430 (11)0.46596 (18)0.39724 (18)0.0288 (7)
H260.00640.44610.43260.035*
C270.02924 (10)0.55180 (17)0.38689 (18)0.0275 (7)
C280.05616 (10)0.58211 (18)0.33736 (17)0.0278 (7)
H280.06020.64110.33130.033*
C290.05841 (11)0.26294 (18)0.32904 (19)0.0311 (7)
H29A0.09380.26830.34990.037*
H29B0.04710.27180.26570.037*
C300.04418 (11)0.17648 (18)0.34973 (18)0.0289 (7)
C310.06809 (12)0.10686 (19)0.33084 (19)0.0346 (7)
H310.09300.11500.30620.041*
C320.05569 (12)0.02574 (19)0.3477 (2)0.0404 (8)
H320.0723−0.02140.33500.048*
C330.01922 (12)0.01313 (19)0.3829 (2)0.0400 (8)
H330.0108−0.04250.39460.048*
C34−0.00487 (12)0.08144 (18)0.4010 (2)0.0344 (7)
H34−0.03010.07280.42480.041*
C350.00742 (11)0.16279 (18)0.38470 (19)0.0313 (7)
H35−0.00940.20960.39750.038*
C360.01009 (12)0.69126 (18)0.4277 (2)0.0373 (8)
H36A−0.01750.71780.44010.045*
H36B0.00910.70920.36900.045*
C370.05594 (11)0.72330 (17)0.4923 (2)0.0310 (7)
C380.07674 (13)0.79806 (19)0.4777 (2)0.0419 (9)
H380.06450.82570.42340.050*
C390.11551 (14)0.8330 (2)0.5421 (3)0.0510 (10)
H390.12910.88480.53170.061*
C400.13430 (13)0.7930 (2)0.6206 (2)0.0452 (9)
H400.16040.81750.66470.054*
C410.11505 (11)0.71712 (19)0.6349 (2)0.0365 (8)
H410.12870.68810.68800.044*
C420.07586 (11)0.68318 (17)0.5719 (2)0.0306 (7)
H420.06230.63170.58310.037*
O2A0.12743 (10)0.49113 (14)0.21304 (16)0.0282 (9)0.780 (6)
C20A0.12933 (15)0.5332 (2)0.0708 (2)0.0250 (10)0.780 (6)
H20A0.10700.58060.06870.030*0.780 (6)
H20B0.11020.48300.04450.030*0.780 (6)
C21A0.15854 (14)0.5148 (2)0.1632 (3)0.0282 (10)0.780 (6)
H21A0.18130.46820.16480.034*0.780 (6)
H21B0.17740.56540.18930.034*0.780 (6)
O2B0.0926 (3)0.5060 (5)0.1643 (5)0.019 (2)*0.220 (6)
C20B0.1638 (5)0.5335 (8)0.1196 (10)0.019 (2)*0.220 (6)
H20C0.17820.47780.14020.022*0.220 (6)
H20D0.17860.57820.16220.022*0.220 (6)
C21B0.1100 (4)0.5333 (7)0.0924 (7)0.019 (2)*0.220 (6)
H21C0.09780.59080.07350.022*0.220 (6)
H21D0.09730.49460.04270.022*0.220 (6)
C1S0.0950 (4)0.8005 (7)0.2786 (7)0.082 (2)*0.25
H1S10.11100.81280.33990.122*0.25
H1S20.10980.83400.24340.122*0.25
H1S30.09840.74020.26790.122*0.25
C2S0.0488 (7)0.8199 (13)0.2578 (13)0.082 (2)*0.25
N2S0.00000.8254 (7)0.25000.082 (2)*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0542 (14)0.0113 (9)0.0335 (11)−0.0014 (8)0.0307 (10)−0.0023 (8)
O30.0843 (19)0.0267 (13)0.0502 (14)−0.0171 (11)0.0479 (14)−0.0105 (10)
O40.0472 (13)0.0229 (11)0.0416 (12)−0.0021 (9)0.0320 (11)−0.0020 (9)
O50.0417 (13)0.0275 (11)0.0486 (13)−0.0024 (9)0.0275 (11)−0.0090 (9)
N10.0529 (17)0.0207 (12)0.0339 (15)−0.0020 (11)0.0264 (14)0.0032 (11)
N20.096 (3)0.0168 (15)0.075 (2)0.0010 (14)0.065 (2)0.0018 (13)
N30.0564 (18)0.0185 (12)0.0320 (14)0.0034 (11)0.0278 (13)0.0006 (11)
N40.0481 (16)0.0150 (12)0.0299 (13)−0.0032 (10)0.0262 (12)−0.0014 (10)
C10.0384 (17)0.0120 (13)0.0318 (16)−0.0006 (12)0.0190 (15)0.0062 (12)
C20.0480 (19)0.0128 (13)0.0292 (15)−0.0002 (12)0.0261 (15)−0.0002 (11)
C30.059 (2)0.0188 (17)0.0429 (19)0.0017 (14)0.0372 (17)0.0035 (13)
C40.0392 (17)0.0157 (14)0.0232 (14)−0.0017 (12)0.0182 (13)−0.0006 (11)
C50.0445 (18)0.0148 (13)0.0254 (15)−0.0025 (12)0.0226 (14)0.0012 (11)
C60.0379 (17)0.0176 (14)0.0273 (15)−0.0007 (12)0.0185 (14)−0.0025 (11)
C70.0391 (17)0.0131 (13)0.0246 (15)−0.0012 (11)0.0192 (13)−0.0016 (11)
C80.051 (2)0.0228 (15)0.0374 (18)0.0002 (13)0.0306 (16)−0.0021 (13)
C90.056 (2)0.0209 (15)0.0295 (17)−0.0008 (14)0.0217 (16)−0.0040 (12)
C100.0417 (18)0.0124 (13)0.0253 (15)−0.0008 (12)0.0196 (14)0.0043 (12)
C110.053 (2)0.0178 (14)0.0268 (15)−0.0027 (13)0.0268 (15)−0.0001 (12)
C120.0448 (18)0.0183 (14)0.0241 (15)−0.0001 (12)0.0219 (14)0.0010 (11)
C130.075 (2)0.0164 (15)0.0474 (19)−0.0038 (15)0.0483 (19)−0.0002 (13)
C140.052 (2)0.0167 (14)0.0342 (17)−0.0028 (13)0.0292 (16)−0.0011 (12)
C150.064 (2)0.0126 (13)0.0368 (17)−0.0090 (13)0.0352 (17)−0.0036 (12)
C160.052 (2)0.0177 (14)0.0328 (16)−0.0078 (13)0.0293 (16)−0.0025 (12)
C170.0458 (19)0.0138 (13)0.0318 (16)−0.0041 (12)0.0220 (15)−0.0003 (12)
C180.0470 (19)0.0186 (14)0.0325 (16)−0.0055 (13)0.0268 (15)−0.0003 (12)
C190.076 (3)0.0174 (15)0.050 (2)−0.0004 (15)0.045 (2)−0.0058 (14)
C220.085 (3)0.0296 (19)0.044 (2)−0.0158 (17)0.047 (2)−0.0121 (15)
C230.0440 (19)0.0305 (16)0.0248 (15)−0.0070 (14)0.0201 (15)−0.0043 (13)
C240.0406 (18)0.0285 (16)0.0298 (16)−0.0040 (13)0.0236 (15)−0.0066 (13)
C250.0327 (17)0.0228 (15)0.0269 (15)−0.0044 (12)0.0150 (14)0.0004 (12)
C260.0322 (17)0.0306 (16)0.0300 (16)−0.0060 (13)0.0188 (14)−0.0026 (13)
C270.0303 (17)0.0283 (16)0.0260 (15)0.0002 (12)0.0120 (14)−0.0044 (12)
C280.0378 (18)0.0256 (15)0.0225 (15)−0.0055 (13)0.0131 (14)−0.0007 (12)
C290.0403 (18)0.0289 (16)0.0316 (16)0.0023 (13)0.0223 (15)−0.0007 (13)
C300.0345 (17)0.0289 (16)0.0278 (16)0.0013 (13)0.0163 (14)−0.0012 (12)
C310.0413 (19)0.0351 (17)0.0341 (17)0.0027 (14)0.0216 (15)−0.0026 (14)
C320.053 (2)0.0279 (17)0.046 (2)0.0078 (15)0.0244 (18)−0.0046 (14)
C330.053 (2)0.0254 (16)0.045 (2)−0.0016 (15)0.0217 (18)−0.0003 (14)
C340.0448 (19)0.0296 (17)0.0358 (17)−0.0023 (14)0.0229 (16)0.0019 (13)
C350.0394 (18)0.0291 (16)0.0327 (17)0.0048 (13)0.0216 (15)0.0001 (13)
C360.044 (2)0.0261 (16)0.049 (2)0.0071 (14)0.0245 (17)−0.0001 (14)
C370.0404 (18)0.0198 (14)0.0454 (19)0.0050 (13)0.0314 (16)−0.0027 (13)
C380.060 (2)0.0276 (17)0.051 (2)0.0024 (16)0.0357 (19)0.0044 (15)
C390.063 (2)0.0293 (18)0.080 (3)−0.0146 (17)0.050 (2)−0.0101 (18)
C400.048 (2)0.043 (2)0.054 (2)−0.0058 (16)0.0307 (19)−0.0148 (18)
C410.0397 (19)0.0334 (17)0.0434 (19)0.0032 (14)0.0233 (16)−0.0057 (15)
C420.0396 (18)0.0209 (14)0.0422 (18)0.0020 (13)0.0285 (16)−0.0024 (13)
O2A0.045 (2)0.0226 (13)0.0289 (16)−0.0052 (12)0.0292 (15)−0.0001 (11)
C20A0.039 (3)0.0168 (17)0.028 (2)−0.0010 (16)0.023 (2)−0.0015 (15)
C21A0.042 (2)0.025 (2)0.026 (2)−0.0020 (17)0.0231 (19)−0.0012 (16)

Geometric parameters (Å, °)

O1—C61.352 (3)C24—H240.9500
O1—C51.478 (3)C25—C261.385 (4)
O3—C221.212 (4)C26—C271.382 (4)
O4—C251.372 (3)C26—H260.9500
O4—C291.437 (3)C27—C281.384 (4)
O5—C271.380 (3)C28—H280.9500
O5—C361.426 (3)C29—C301.500 (4)
N1—C11.157 (3)C29—H29A0.9900
N2—C31.152 (4)C29—H29B0.9900
N3—C101.149 (3)C30—C351.390 (4)
N4—C171.347 (4)C30—C311.393 (4)
N4—C161.348 (3)C31—C321.386 (4)
N4—C191.475 (3)C31—H310.9500
C1—C21.412 (4)C32—C331.382 (5)
C2—C61.395 (4)C32—H320.9500
C2—C31.417 (4)C33—C341.374 (4)
C4—C111.366 (4)C33—H330.9500
C4—C71.430 (4)C34—C351.385 (4)
C4—C51.513 (4)C34—H340.9500
C5—C91.516 (4)C35—H350.9500
C5—C81.527 (4)C36—C371.508 (5)
C6—C71.397 (4)C36—H36A0.9900
C7—C101.424 (4)C36—H36B0.9900
C8—H8A0.9800C37—C381.386 (4)
C8—H8B0.9800C37—C421.396 (4)
C8—H8C0.9800C38—C391.394 (5)
C9—H9A0.9800C38—H380.9500
C9—H9B0.9800C39—C401.378 (5)
C9—H9C0.9800C39—H390.9500
C11—C121.415 (4)C40—C411.378 (5)
C11—H110.9500C40—H400.9500
C12—C131.357 (4)C41—C421.383 (4)
C12—H120.9500C41—H410.9500
C13—C141.462 (4)C42—H420.9500
C13—C20A1.518 (5)O2A—C21A1.452 (5)
C13—C20B1.643 (15)C20A—C21A1.507 (6)
C14—C181.410 (4)C20A—H20A0.9900
C14—C151.411 (4)C20A—H20B0.9900
C15—C161.361 (4)C21A—H21A0.9900
C15—H150.9500C21A—H21B0.9900
C16—H160.9500O2B—C21B1.486 (14)
C17—C181.362 (4)C20B—C21B1.498 (17)
C17—H170.9500C20B—H20C0.9900
C18—H180.9500C20B—H20D0.9900
C19—H19A0.9800C21B—H21C0.9900
C19—H19B0.9800C21B—H21D0.9900
C19—H19C0.9800C1S—C2S1.33 (2)
C22—O2A1.380 (4)C1S—H1S10.9800
C22—O2B1.470 (9)C1S—H1S20.9800
C22—C231.488 (4)C1S—H1S30.9800
C23—C241.390 (4)C2S—N2S1.40 (2)
C23—C281.391 (4)N2S—C2Si1.40 (2)
C24—C251.378 (4)
C6—O1—C5109.24 (19)C27—C26—C25120.1 (3)
C25—O4—C29117.6 (2)C27—C26—H26119.9
C27—O5—C36119.4 (2)C25—C26—H26119.9
C17—N4—C16119.8 (2)O5—C27—C26114.3 (2)
C17—N4—C19120.5 (2)O5—C27—C28124.8 (3)
C16—N4—C19119.7 (2)C26—C27—C28120.9 (3)
N1—C1—C2177.7 (3)C27—C28—C23117.8 (3)
C6—C2—C1122.5 (2)C27—C28—H28121.1
C6—C2—C3120.5 (2)C23—C28—H28121.1
C1—C2—C3117.0 (2)O4—C29—C30109.3 (2)
N2—C3—C2179.0 (3)O4—C29—H29A109.8
C11—C4—C7130.3 (2)C30—C29—H29A109.8
C11—C4—C5123.7 (2)O4—C29—H29B109.8
C7—C4—C5106.0 (2)C30—C29—H29B109.8
O1—C5—C4104.19 (19)H29A—C29—H29B108.3
O1—C5—C9107.3 (2)C35—C30—C31118.7 (3)
C4—C5—C9112.6 (2)C35—C30—C29122.9 (3)
O1—C5—C8106.3 (2)C31—C30—C29118.4 (3)
C4—C5—C8113.8 (2)C32—C31—C30120.4 (3)
C9—C5—C8111.9 (2)C32—C31—H31119.8
O1—C6—C2117.2 (2)C30—C31—H31119.8
O1—C6—C7111.5 (2)C33—C32—C31120.3 (3)
C2—C6—C7131.4 (2)C33—C32—H32119.9
C6—C7—C10123.6 (2)C31—C32—H32119.9
C6—C7—C4109.1 (2)C34—C33—C32119.7 (3)
C10—C7—C4126.9 (2)C34—C33—H33120.1
C5—C8—H8A109.5C32—C33—H33120.1
C5—C8—H8B109.5C33—C34—C35120.4 (3)
H8A—C8—H8B109.5C33—C34—H34119.8
C5—C8—H8C109.5C35—C34—H34119.8
H8A—C8—H8C109.5C34—C35—C30120.5 (3)
H8B—C8—H8C109.5C34—C35—H35119.8
C5—C9—H9A109.5C30—C35—H35119.8
C5—C9—H9B109.5O5—C36—C37113.9 (2)
H9A—C9—H9B109.5O5—C36—H36A108.8
C5—C9—H9C109.5C37—C36—H36A108.8
H9A—C9—H9C109.5O5—C36—H36B108.8
H9B—C9—H9C109.5C37—C36—H36B108.8
N3—C10—C7177.0 (3)H36A—C36—H36B107.7
C4—C11—C12123.7 (2)C38—C37—C42118.1 (3)
C4—C11—H11118.2C38—C37—C36120.7 (3)
C12—C11—H11118.2C42—C37—C36120.9 (3)
C13—C12—C11129.0 (3)C37—C38—C39120.6 (3)
C13—C12—H12115.5C37—C38—H38119.7
C11—C12—H12115.5C39—C38—H38119.7
C12—C13—C14120.3 (3)C40—C39—C38120.5 (3)
C12—C13—C20A120.6 (3)C40—C39—H39119.8
C14—C13—C20A118.9 (3)C38—C39—H39119.8
C12—C13—C20B112.8 (5)C39—C40—C41119.6 (3)
C14—C13—C20B115.7 (5)C39—C40—H40120.2
C18—C14—C15114.8 (2)C41—C40—H40120.2
C18—C14—C13122.2 (2)C40—C41—C42120.1 (3)
C15—C14—C13123.0 (2)C40—C41—H41119.9
C16—C15—C14121.7 (3)C42—C41—H41119.9
C16—C15—H15119.1C41—C42—C37121.1 (3)
C14—C15—H15119.1C41—C42—H42119.4
N4—C16—C15120.9 (3)C37—C42—H42119.4
N4—C16—H16119.5C22—O2A—C21A116.9 (2)
C15—C16—H16119.5C21A—C20A—C13108.7 (3)
N4—C17—C18121.1 (2)C21A—C20A—H20A110.0
N4—C17—H17119.4C13—C20A—H20A110.0
C18—C17—H17119.4C21A—C20A—H20B110.0
C17—C18—C14121.6 (3)C13—C20A—H20B110.0
C17—C18—H18119.2H20A—C20A—H20B108.3
C14—C18—H18119.2O2A—C21A—C20A110.6 (3)
N4—C19—H19A109.5O2A—C21A—H21A109.5
N4—C19—H19B109.5C20A—C21A—H21A109.5
H19A—C19—H19B109.5O2A—C21A—H21B109.5
N4—C19—H19C109.5C20A—C21A—H21B109.5
H19A—C19—H19C109.5H21A—C21A—H21B108.1
H19B—C19—H19C109.5C22—O2B—C21B118.6 (7)
O3—C22—O2A123.0 (3)C21B—C20B—C1391.8 (9)
O3—C22—O2B115.1 (4)C21B—C20B—H20C113.3
O2A—C22—O2B45.3 (3)C13—C20B—H20C113.3
O3—C22—C23125.3 (3)C21B—C20B—H20D113.3
O2A—C22—C23111.4 (3)C13—C20B—H20D113.3
O2B—C22—C23106.2 (4)H20C—C20B—H20D110.6
C24—C23—C28122.1 (3)O2B—C21B—C20B111.3 (10)
C24—C23—C22120.1 (3)O2B—C21B—H21C109.4
C28—C23—C22117.8 (3)C20B—C21B—H21C109.4
C25—C24—C23118.5 (3)O2B—C21B—H21D109.4
C25—C24—H24120.7C20B—C21B—H21D109.4
C23—C24—H24120.7H21C—C21B—H21D108.0
O4—C25—C24124.6 (2)C1S—C2S—N2S166.3 (18)
O4—C25—C26114.9 (2)C2Si—N2S—C2S172.9 (19)
C24—C25—C26120.4 (3)
C6—O1—C5—C4−0.3 (3)C28—C23—C24—C250.2 (5)
C6—O1—C5—C9119.3 (2)C22—C23—C24—C25178.8 (3)
C6—O1—C5—C8−120.8 (2)C29—O4—C25—C24−0.2 (4)
C11—C4—C5—O1−178.4 (3)C29—O4—C25—C26179.8 (3)
C7—C4—C5—O11.6 (3)C23—C24—C25—O4179.8 (3)
C11—C4—C5—C965.7 (4)C23—C24—C25—C26−0.3 (4)
C7—C4—C5—C9−114.4 (3)O4—C25—C26—C27−179.1 (3)
C11—C4—C5—C8−63.0 (4)C24—C25—C26—C270.9 (4)
C7—C4—C5—C8116.9 (3)C36—O5—C27—C26175.3 (3)
C5—O1—C6—C2178.2 (3)C36—O5—C27—C28−5.9 (4)
C5—O1—C6—C7−1.2 (3)C25—C26—C27—O5177.3 (3)
C1—C2—C6—O1178.3 (3)C25—C26—C27—C28−1.6 (5)
C3—C2—C6—O1−0.8 (4)O5—C27—C28—C23−177.3 (3)
C1—C2—C6—C7−2.5 (5)C26—C27—C28—C231.5 (4)
C3—C2—C6—C7178.4 (3)C24—C23—C28—C27−0.9 (5)
O1—C6—C7—C10174.9 (3)C22—C23—C28—C27−179.4 (3)
C2—C6—C7—C10−4.3 (5)C25—O4—C29—C30−178.0 (2)
O1—C6—C7—C42.3 (4)O4—C29—C30—C3514.4 (4)
C2—C6—C7—C4−177.0 (3)O4—C29—C30—C31−167.4 (3)
C11—C4—C7—C6177.6 (3)C35—C30—C31—C32−0.8 (5)
C5—C4—C7—C6−2.3 (3)C29—C30—C31—C32−179.1 (3)
C11—C4—C7—C105.3 (5)C30—C31—C32—C330.5 (5)
C5—C4—C7—C10−174.7 (3)C31—C32—C33—C340.2 (5)
C7—C4—C11—C126.6 (5)C32—C33—C34—C35−0.5 (5)
C5—C4—C11—C12−173.4 (3)C33—C34—C35—C300.1 (5)
C4—C11—C12—C13−170.8 (3)C31—C30—C35—C340.5 (5)
C11—C12—C13—C14−177.2 (3)C29—C30—C35—C34178.7 (3)
C11—C12—C13—C20A8.4 (6)C27—O5—C36—C37−78.9 (3)
C11—C12—C13—C20B−35.0 (7)O5—C36—C37—C38152.5 (3)
C12—C13—C14—C18175.4 (3)O5—C36—C37—C42−34.0 (4)
C20A—C13—C14—C18−10.1 (5)C42—C37—C38—C39−1.9 (4)
C20B—C13—C14—C1834.2 (7)C36—C37—C38—C39171.8 (3)
C12—C13—C14—C15−5.0 (5)C37—C38—C39—C401.2 (5)
C20A—C13—C14—C15169.6 (3)C38—C39—C40—C411.1 (5)
C20B—C13—C14—C15−146.1 (6)C39—C40—C41—C42−2.6 (5)
C18—C14—C15—C16−1.5 (5)C40—C41—C42—C371.9 (4)
C13—C14—C15—C16178.8 (3)C38—C37—C42—C410.4 (4)
C17—N4—C16—C15−0.6 (5)C36—C37—C42—C41−173.3 (3)
C19—N4—C16—C15179.9 (3)O3—C22—O2A—C21A−3.8 (5)
C14—C15—C16—N41.8 (5)C23—C22—O2A—C21A−177.8 (3)
C16—N4—C17—C18−0.8 (4)C12—C13—C20A—C21A−93.6 (4)
C19—N4—C17—C18178.7 (3)C14—C13—C20A—C21A91.9 (4)
N4—C17—C18—C141.0 (5)C22—O2A—C21A—C20A−82.2 (4)
C15—C14—C18—C170.2 (5)C13—C20A—C21A—O2A−179.1 (2)
C13—C14—C18—C17179.9 (3)O3—C22—O2B—C21B26.8 (9)
O3—C22—C23—C24−176.7 (4)C23—C22—O2B—C21B170.0 (7)
O2A—C22—C23—C24−2.8 (5)C12—C13—C20B—C21B104.1 (7)
O2B—C22—C23—C2445.0 (5)C14—C13—C20B—C21B−111.9 (7)
O3—C22—C23—C281.9 (6)C22—O2B—C21B—C20B60.6 (11)
O2A—C22—C23—C28175.8 (3)C13—C20B—C21B—O2B174.5 (7)
O2B—C22—C23—C28−136.4 (4)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···N1ii0.982.593.529 (4)161
C9—H9B···N3iii0.982.593.497 (5)153
C16—H16···N1iv0.952.513.406 (4)156
C17—H17···N2v0.952.513.380 (4)152
C19—H19C···N2v0.982.503.340 (4)143
C26—H26···O5vi0.952.513.398 (4)155
C8—H8B···Cg1vii0.982.543.515 (3)171

Symmetry codes: (ii) x, −y+2, z+1/2; (iii) −x+1/2, −y+3/2, −z; (iv) −x+1/2, y−1/2, −z−1/2; (v) x, y−1, z; (vi) −x, −y+1, −z+1; (vii) x, −y+1, z−1/2.

Table 2 Interplanar angles of the planar entities (°)

PlaneC1–C12,N1–N3,O1C12–C19,N4C22–C30,O3–O4C29–C35C37–C42SIGPa
C1–C12,N1–N3,O114.59 (10)18.77 (7)31.92 (12)64.58 (13)0.025 (3)
C12–C19,N414.59 (10)4.90 (9)18.33 (13)75.25 (15)0.033 (3)
C22–C30,O3–O418.77 (7)4.90 (9)13.48 (11)80.11 (12)0.026 (3)
C29–C35b31.92 (12)18.33 (13)13.48 (11)86.94 (16)0.004 (3)

Notes: (a) Sqrt(Sum(j=1:N)(D(j)**2/(N-3)) (Spek, 2009); (b) SIGP for plane C37–C42 is 0.014 (3) Å.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2693).

References

  • ADSC (2009). ADSC Quantum 210r software. http://www.adsc-xray.com/
  • Bruker (2001). XPREP for UNIX. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clarke, D. J., Teshome, A., Bhuiyan, M. D. H., Ashraf, M., Middleton, A. P., Gainsford, G. J., Asselberghs, I., Clays, K., Smith, G. J. & Kay, A. J. (2009). Proc AIP Conference Proceedings, AMN-4, Dunedin, New Zealand, pp. 92–93.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637. [PubMed]
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619. [PubMed]
  • Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.
  • Kay, A. J., Gainsford, G. J. & Bhuiyan, D. (2008). Poster 8, ICONO10 Conference Abstracts, p. 141.
  • Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.
  • Kim, T.-D., Kang, J.-W., Luo, J., Jang, S.-H., Ka, J.-W., Tucker, N., Benedict, J. B., Dalton, L. R., Gray, T., Overney, R. M., Park, D. H., Herman, W. N. & Jen, A. K.-Y. (2007). J. Am. Chem. Soc. 129, 488–489. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.
  • McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography