PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3207.
Published online 2009 November 25. doi:  10.1107/S1600536809049988
PMCID: PMC2972045

(E)-N′-(4-Methoxy­benzyl­idene)benzohydrazide

Abstract

In the title mol­ecule, C15H14N2O2, the dihedral angle between the benzene rings is 5.93 (17)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For properties of Schiff base ligands, see: Cozzi et al. (2004 [triangle]). For related crystal structures, see: Fun et al. (2008 [triangle]); Cui et al. (2009 [triangle]); Nie (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3207-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O2
  • M r = 254.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3207-efi1.jpg
  • a = 31.414 (3) Å
  • b = 5.1067 (5) Å
  • c = 8.1336 (9) Å
  • V = 1304.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.49 × 0.48 × 0.30 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.958, T max = 0.974
  • 2220 measured reflections
  • 1239 independent reflections
  • 920 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.106
  • S = 1.03
  • 1239 reflections
  • 173 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049988/bq2172sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049988/bq2172Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Foundation of Binzhou University.

supplementary crystallographic information

Comment

Schiff bases are popular ligands in coordination chemistry due to their ease of synthesis and their ability to be readily modified both electronically and sterically. Mixed-donor Schiff bases have been used extensively in catalysis (Cozzi, 2004).

In (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Nie et al., 2008; Fun et al., 2008; Cui et al., 2009).

In the crystal structure, the C8=N2 bond length in the molecule is 1.269 (3) °, showing the double-bond character. Meanwhile, the dihedral angle between the benzene ring (C2-C7) and the benzene ring (C9-C14) in the Schiff base molecule is 5.93 (17) °, indicating that the two aromatic ring planes are almost coplanar. Moreover, the crystal supramolecular structure was built from the connections of weak intermolecular N—H···O hydrogen bonds, as shown in table 1, and these hydrogen bonds link molecules into one-dimensional chains propagated in direction [010].

Experimental

Benzohydrazide (5.0 mmol), 20 ml ethanol and 4-methoxybenzaldehyde (5.0 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C15H14N2O2: C 70.85, H 5.55, N 11.02%; found: C 70.78, H 5.64, N 11.13%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H=0.86 and C—H=0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C) (C,N). Because of the meaningless of the absolute structure parameter, 981 Friedel-pairs were merged before final refinement.

Figures

Fig. 1.
A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
Fig. 2.
The packing of (I) builted from the connections of weak intermolecular N—H···O hydrogen bonds with dashed lines.

Crystal data

C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.294 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1475 reflections
a = 31.414 (3) Åθ = 2.6–22.4°
b = 5.1067 (5) ŵ = 0.09 mm1
c = 8.1336 (9) ÅT = 298 K
V = 1304.8 (2) Å3Block, colourless
Z = 40.49 × 0.48 × 0.30 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer1239 independent reflections
Radiation source: fine-focus sealed tube920 reflections with I > 2σ(I)
graphiteRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = 0→36
Tmin = 0.958, Tmax = 0.974k = 0→6
2220 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.051P)2 + 0.0327P] where P = (Fo2 + 2Fc2)/3
1239 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.32900 (6)0.0513 (4)0.8803 (3)0.0446 (6)
H10.31820.20510.86910.053*
N20.37282 (6)0.0199 (4)0.8715 (3)0.0448 (6)
O10.31604 (5)−0.3787 (3)0.9244 (3)0.0612 (6)
O20.57114 (5)0.2572 (4)0.8020 (3)0.0618 (6)
C10.30295 (7)−0.1548 (5)0.9062 (4)0.0414 (6)
C20.25645 (8)−0.0907 (4)0.9049 (4)0.0404 (6)
C30.22924 (9)−0.2535 (6)0.9909 (4)0.0522 (8)
H30.2400−0.39611.04870.063*
C40.18566 (10)−0.2029 (7)0.9905 (5)0.0688 (11)
H40.1673−0.30981.05010.083*
C50.16978 (9)0.0027 (7)0.9031 (6)0.0707 (10)
H50.14070.03660.90430.085*
C60.19643 (9)0.1599 (6)0.8133 (5)0.0653 (10)
H60.18530.29590.75050.078*
C70.23964 (8)0.1159 (5)0.8162 (4)0.0506 (8)
H70.25770.22620.75790.061*
C80.39287 (8)0.2202 (5)0.8213 (4)0.0437 (7)
H80.37750.36760.78980.052*
C90.43914 (7)0.2271 (5)0.8114 (4)0.0399 (6)
C100.46450 (8)0.0478 (5)0.8944 (4)0.0478 (7)
H100.4517−0.08540.95470.057*
C110.50810 (8)0.0635 (5)0.8889 (4)0.0479 (7)
H110.5245−0.05770.94600.058*
C120.52766 (7)0.2591 (5)0.7988 (4)0.0420 (6)
C130.50332 (9)0.4391 (5)0.7160 (4)0.0472 (7)
H130.51630.57080.65500.057*
C140.45933 (8)0.4235 (5)0.7239 (4)0.0485 (8)
H140.44300.54790.66910.058*
C150.59304 (9)0.4528 (7)0.7113 (5)0.0735 (10)
H15A0.58480.44350.59780.110*
H15B0.62320.42490.72030.110*
H15C0.58600.62240.75440.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0362 (12)0.0317 (11)0.0658 (16)0.0055 (9)−0.0014 (13)0.0011 (12)
N20.0331 (12)0.0412 (12)0.0600 (16)0.0020 (10)−0.0012 (13)−0.0067 (12)
O10.0481 (10)0.0330 (10)0.1026 (18)0.0060 (8)−0.0035 (13)0.0002 (12)
O20.0379 (11)0.0707 (13)0.0766 (14)−0.0043 (10)−0.0008 (12)0.0158 (12)
C10.0410 (13)0.0339 (13)0.0492 (17)−0.0011 (12)−0.0008 (16)−0.0051 (15)
C20.0402 (14)0.0369 (13)0.0439 (17)−0.0002 (11)−0.0016 (15)−0.0060 (16)
C30.0510 (18)0.0496 (17)0.056 (2)−0.0085 (14)0.0014 (16)−0.0045 (16)
C40.050 (2)0.082 (3)0.075 (3)−0.0216 (18)0.0150 (19)−0.018 (2)
C50.0399 (16)0.079 (2)0.093 (3)0.0042 (16)−0.011 (2)−0.022 (3)
C60.0501 (19)0.060 (2)0.086 (3)0.0124 (16)−0.0138 (19)−0.009 (2)
C70.0453 (17)0.0448 (15)0.062 (2)0.0023 (13)−0.0056 (16)−0.0029 (17)
C80.0398 (14)0.0357 (14)0.0556 (19)0.0035 (12)−0.0036 (14)0.0009 (14)
C90.0398 (14)0.0342 (14)0.0456 (16)0.0011 (12)0.0002 (15)−0.0049 (14)
C100.0451 (15)0.0416 (14)0.0566 (19)0.0012 (12)0.0025 (17)0.0087 (18)
C110.0428 (15)0.0446 (15)0.0563 (19)0.0049 (12)−0.0057 (17)0.0068 (18)
C120.0336 (15)0.0442 (15)0.0482 (16)−0.0017 (13)0.0013 (15)−0.0061 (14)
C130.0444 (17)0.0428 (17)0.0542 (19)−0.0055 (13)0.0028 (16)0.0076 (15)
C140.0444 (18)0.0408 (16)0.060 (2)0.0063 (13)−0.0031 (16)0.0051 (15)
C150.0471 (19)0.081 (2)0.092 (3)−0.0165 (16)−0.0041 (18)0.013 (2)

Geometric parameters (Å, °)

N1—C11.350 (3)C6—H60.9300
N1—N21.388 (2)C7—H70.9300
N1—H10.8600C8—C91.456 (3)
N2—C81.269 (3)C8—H80.9300
O1—C11.224 (3)C9—C141.384 (4)
O2—C121.366 (3)C9—C101.389 (4)
O2—C151.420 (4)C10—C111.373 (3)
C1—C21.497 (3)C10—H100.9300
C2—C31.382 (4)C11—C121.383 (4)
C2—C71.383 (3)C11—H110.9300
C3—C41.393 (4)C12—C131.372 (4)
C3—H30.9300C13—C141.386 (4)
C4—C51.363 (5)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.370 (5)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.376 (4)C15—H15C0.9600
C1—N1—N2121.29 (19)N2—C8—H8118.9
C1—N1—H1119.4C9—C8—H8118.9
N2—N1—H1119.4C14—C9—C10117.7 (2)
C8—N2—N1114.6 (2)C14—C9—C8120.2 (2)
C12—O2—C15118.0 (2)C10—C9—C8122.0 (3)
O1—C1—N1122.9 (2)C11—C10—C9121.2 (3)
O1—C1—C2122.2 (2)C11—C10—H10119.4
N1—C1—C2114.8 (2)C9—C10—H10119.4
C3—C2—C7119.1 (2)C10—C11—C12120.2 (3)
C3—C2—C1117.9 (2)C10—C11—H11119.9
C7—C2—C1122.9 (2)C12—C11—H11119.9
C2—C3—C4119.7 (3)O2—C12—C13124.8 (3)
C2—C3—H3120.2O2—C12—C11115.4 (2)
C4—C3—H3120.2C13—C12—C11119.8 (2)
C5—C4—C3120.3 (3)C12—C13—C14119.7 (3)
C5—C4—H4119.9C12—C13—H13120.2
C3—C4—H4119.9C14—C13—H13120.2
C4—C5—C6120.4 (3)C9—C14—C13121.5 (3)
C4—C5—H5119.8C9—C14—H14119.2
C6—C5—H5119.8C13—C14—H14119.2
C5—C6—C7119.9 (3)O2—C15—H15A109.5
C5—C6—H6120.1O2—C15—H15B109.5
C7—C6—H6120.1H15A—C15—H15B109.5
C6—C7—C2120.7 (3)O2—C15—H15C109.5
C6—C7—H7119.7H15A—C15—H15C109.5
C2—C7—H7119.7H15B—C15—H15C109.5
N2—C8—C9122.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.172.961 (2)152

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2172).

References

  • Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421. [PubMed]
  • Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472. [PMC free article] [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [PMC free article] [PubMed]
  • Nie, Y. (2008). Acta Cryst. E64, o471. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography