PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1671.
Published online 2009 November 25. doi:  10.1107/S1600536809049484
PMCID: PMC2972037

{2,2′-[5-Bromo­pyridine-2,3-diylbis(nitrilo­methyl­idyne)]diphenolato}chlorido(dimethyl­formamide)manganese(III)

Abstract

In the title complex, [Mn(C19H12BrN3O2)Cl(C3H7NO)], the MnIII ion is coordinated by two N and two O atoms from the tetra­dentate Schiff base ligand, one O atom from the dimethyl­formamide ligand and a Cl anion in a distorted octa­hedral geometry. In the crystal structure, weak inter­molecular C—H(...)Cl hydrogen bonds link the mol­ecules into centrosymmetric dimers with a short distance of 3.878 (3) Å between the centroids of the aromatic rings.

Related literature

For related structures, see: Li et al. (2008 [triangle]); Eltayeb et al. (2008a [triangle],b [triangle]); Fei & Fang (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1671-scheme1.jpg

Experimental

Crystal data

  • [Mn(C19H12BrN3O2)Cl(C3H7NO)]
  • M r = 557.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1671-efi1.jpg
  • a = 13.2834 (11) Å
  • b = 15.4971 (13) Å
  • c = 12.2314 (11) Å
  • β = 117.143 (1)°
  • V = 2240.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.52 mm−1
  • T = 293 K
  • 0.31 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.508, T max = 0.646
  • 10906 measured reflections
  • 3945 independent reflections
  • 3238 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.116
  • S = 1.06
  • 3945 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 1.30 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049484/cv2658sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049484/cv2658Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by a research grant from the Shanxi Datong University Foundation of Shanxi Province of the People’s Republic of China (grant No. 2008 K1). We also thank Huazhong Normal University for supporting this study.

supplementary crystallographic information

Comment

Because of their interesting structures and wide potential applications, the synthesis and structural investigation of Schiff base complexes have been given much attention. Furthermore, these types of complexes play an important part in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Li et al., 2008; Fei & Fang, 2008).

The crystal structure of the title compound is shown in Fig. 1. The coordination sphere of the MnIII ion is a slightly distorted octahedron, in which the four equatorial positions are occupied by two N atoms and two O atoms coming from the tetradentate Schiff base ligand, and the two axial ones with a trans conformation are occupied by one Cl ion and one O atom of the coordinated dimethylamine-methoxyl, respectively. The Mn—N, Mn—O and Mn—Cl bond lengths are basically consistant with those corresponding distances in other Mn-Schiff base complexes (Li et al., 2008; Eltayeb et al., 2008a, b). It is worth noting that centrosymmetric dimers with the short distance of 3.878 (3) Å between the centroids of aromatic rings are formed under the help of the weak intermolecular C—H···Cl hydrogen bond interaction (Table 1).

Experimental

The Schiff base ligand was synthesized by condensation of 5-bromo-2,3-diaminopyridine and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol. The synthesis of the title complex was carried out by reacting Mn(ClO4)2.6H2O, and the schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about one hour at room temperature, the mixture was filtered. The insoluble dark-brown solid was filtered out, dissolved in DMF and layered with ether. After one month, the block dark-brown crystals suitable for X-ray diffraction were obtained with a yield about 50%.

Refinement

H atoms were placed in calcluated positions (C—H 0.93-0.96 Å), and were refined as riding atoms, with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity.

Crystal data

[Mn(C19H12BrN3O2)Cl(C3H7NO)]F(000) = 1120
Mr = 557.71Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2012 reflections
a = 13.2834 (11) Åθ = 2.1–26.7°
b = 15.4971 (13) ŵ = 2.52 mm1
c = 12.2314 (11) ÅT = 293 K
β = 117.143 (1)°Block, dark-brown
V = 2240.6 (3) Å30.31 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3945 independent reflections
Radiation source: fine-focus sealed tube3238 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)h = −15→15
Tmin = 0.508, Tmax = 0.646k = −13→18
10906 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0643P)2 + 1.7733P] where P = (Fo2 + 2Fc2)/3
3945 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 1.30 e Å3
0 restraintsΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.45611 (4)0.63147 (3)0.36373 (4)0.06441 (17)
Mn10.81172 (4)0.45734 (3)0.12690 (5)0.03870 (16)
Cl10.68097 (8)0.34011 (7)0.05359 (10)0.0587 (3)
O10.9460 (2)0.38529 (17)0.1822 (2)0.0521 (6)
O20.7824 (2)0.49890 (18)−0.0267 (2)0.0518 (6)
O30.9317 (2)0.56444 (18)0.2006 (3)0.0567 (7)
N10.8278 (2)0.45131 (18)0.3010 (3)0.0423 (7)
N20.6755 (2)0.54058 (18)0.1157 (3)0.0418 (7)
N30.7332 (3)0.4802 (2)0.4180 (3)0.0516 (8)
N41.0806 (3)0.6366 (2)0.1995 (3)0.0503 (8)
C10.7383 (3)0.4907 (2)0.3157 (3)0.0418 (8)
C20.6585 (3)0.5396 (2)0.2180 (3)0.0401 (8)
C30.5713 (3)0.5821 (2)0.2312 (3)0.0459 (8)
H30.51750.61510.16810.055*
C40.5694 (3)0.5727 (2)0.3378 (4)0.0482 (9)
C50.6486 (3)0.5208 (3)0.4285 (4)0.0530 (9)
H50.64280.51350.50090.064*
C61.0097 (3)0.3730 (2)0.3939 (4)0.0455 (9)
C71.0197 (3)0.3568 (2)0.2899 (4)0.0455 (9)
C81.1146 (3)0.3060 (3)0.3007 (4)0.0550 (10)
H81.12280.29510.23040.066*
C91.1925 (3)0.2733 (3)0.4095 (5)0.0618 (11)
H91.25190.23990.41250.074*
C101.1839 (3)0.2892 (3)0.5137 (4)0.0623 (11)
H101.23720.26750.58880.075*
C111.0937 (3)0.3385 (3)0.5056 (4)0.0559 (10)
H111.08810.34960.57740.067*
C120.9159 (3)0.4184 (2)0.3953 (3)0.0463 (8)
H120.91770.42520.47170.056*
C130.6144 (3)0.5898 (2)−0.0885 (3)0.0432 (8)
C140.7045 (3)0.5503 (2)−0.1064 (3)0.0450 (8)
C150.7093 (4)0.5706 (3)−0.2114 (4)0.0555 (10)
H150.76760.5487−0.22540.067*
C160.6292 (4)0.6232 (3)−0.2976 (4)0.0620 (11)
H160.63490.6356−0.36890.074*
C170.5388 (4)0.6590 (3)−0.2831 (4)0.0605 (11)
H170.48530.6937−0.34380.073*
C180.5322 (3)0.6420 (3)−0.1807 (4)0.0528 (9)
H180.47280.6645−0.16930.063*
C190.6052 (3)0.5823 (2)0.0182 (3)0.0418 (8)
H190.54380.60910.02130.050*
C200.9824 (3)0.5958 (3)0.1477 (4)0.0518 (9)
H200.94840.59020.06270.062*
C211.1408 (4)0.6469 (4)0.3284 (4)0.0799 (14)
H21A1.10980.69460.35320.120*
H21B1.21910.65790.35150.120*
H21C1.13440.59520.36800.120*
C221.1358 (4)0.6716 (3)0.1327 (4)0.0620 (11)
H22A1.08570.66870.04620.093*
H22B1.20300.63900.15080.093*
H22C1.15580.73070.15620.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0571 (3)0.0792 (3)0.0650 (3)0.0171 (2)0.0349 (2)0.0026 (2)
Mn10.0317 (3)0.0426 (3)0.0388 (3)0.0076 (2)0.0134 (2)0.0029 (2)
Cl10.0422 (5)0.0516 (5)0.0713 (7)0.0020 (4)0.0165 (5)−0.0049 (5)
O10.0397 (14)0.0642 (17)0.0499 (15)0.0126 (12)0.0184 (12)0.0036 (12)
O20.0499 (15)0.0583 (16)0.0463 (14)0.0128 (13)0.0212 (12)0.0064 (12)
O30.0516 (15)0.0600 (17)0.0592 (17)−0.0085 (13)0.0259 (14)−0.0013 (13)
N10.0373 (15)0.0417 (16)0.0448 (16)0.0038 (12)0.0161 (13)0.0031 (13)
N20.0378 (15)0.0421 (16)0.0402 (16)0.0030 (12)0.0133 (13)0.0013 (12)
N30.0526 (19)0.061 (2)0.0447 (18)0.0090 (16)0.0252 (15)0.0067 (14)
N40.0459 (18)0.0497 (18)0.057 (2)0.0010 (14)0.0248 (16)0.0029 (14)
C10.0361 (18)0.0406 (19)0.047 (2)0.0007 (15)0.0179 (16)−0.0015 (15)
C20.0362 (18)0.0412 (18)0.0413 (19)−0.0008 (14)0.0163 (15)−0.0027 (14)
C30.0387 (19)0.045 (2)0.047 (2)0.0038 (16)0.0134 (16)0.0002 (16)
C40.042 (2)0.051 (2)0.055 (2)0.0018 (16)0.0245 (18)−0.0021 (17)
C50.057 (2)0.057 (2)0.050 (2)0.0087 (19)0.0292 (19)0.0052 (18)
C60.0330 (18)0.045 (2)0.052 (2)0.0016 (14)0.0131 (16)0.0069 (16)
C70.0298 (17)0.0419 (19)0.058 (2)0.0004 (14)0.0142 (17)0.0061 (16)
C80.044 (2)0.049 (2)0.073 (3)0.0061 (17)0.028 (2)0.0050 (19)
C90.033 (2)0.054 (2)0.089 (3)0.0102 (17)0.020 (2)0.014 (2)
C100.039 (2)0.060 (3)0.070 (3)0.0065 (18)0.009 (2)0.019 (2)
C110.043 (2)0.059 (2)0.053 (2)−0.0006 (18)0.0110 (18)0.0064 (19)
C120.042 (2)0.049 (2)0.044 (2)0.0027 (16)0.0164 (17)0.0019 (16)
C130.0367 (18)0.0402 (19)0.0426 (19)−0.0040 (15)0.0094 (15)0.0022 (15)
C140.0415 (19)0.046 (2)0.0420 (19)−0.0066 (16)0.0139 (16)−0.0031 (15)
C150.056 (2)0.063 (3)0.051 (2)−0.004 (2)0.027 (2)−0.0019 (19)
C160.064 (3)0.071 (3)0.045 (2)−0.006 (2)0.020 (2)0.0082 (19)
C170.059 (3)0.063 (3)0.048 (2)0.004 (2)0.014 (2)0.0117 (19)
C180.046 (2)0.056 (2)0.050 (2)0.0023 (17)0.0159 (18)0.0049 (18)
C190.0339 (17)0.0390 (18)0.049 (2)0.0023 (15)0.0159 (16)0.0002 (15)
C200.049 (2)0.053 (2)0.050 (2)0.0000 (18)0.0201 (19)0.0005 (18)
C210.067 (3)0.105 (4)0.062 (3)−0.029 (3)0.024 (2)−0.006 (3)
C220.060 (3)0.063 (3)0.077 (3)0.002 (2)0.043 (2)0.008 (2)

Geometric parameters (Å, °)

Br1—C41.906 (4)C7—C81.441 (5)
Mn1—O21.851 (3)C8—C91.357 (6)
Mn1—O11.945 (2)C8—H80.9300
Mn1—N12.043 (3)C9—C101.352 (6)
Mn1—N22.175 (3)C9—H90.9300
Mn1—O32.190 (3)C10—C111.387 (6)
Mn1—Cl12.3875 (11)C10—H100.9300
O1—C71.308 (4)C11—H110.9300
O2—C141.317 (4)C12—H120.9300
O3—C201.227 (5)C13—C191.371 (5)
N1—C121.315 (4)C13—C181.412 (5)
N1—C11.419 (4)C13—C141.447 (5)
N2—C191.302 (4)C14—C151.352 (5)
N2—C21.369 (4)C15—C161.372 (6)
N3—C11.294 (5)C15—H150.9300
N3—C51.344 (5)C16—C171.404 (6)
N4—C201.323 (5)C16—H160.9300
N4—C211.414 (6)C17—C181.322 (6)
N4—C221.431 (5)C17—H170.9300
C1—C21.404 (5)C18—H180.9300
C2—C31.404 (5)C19—H190.9300
C3—C41.324 (5)C20—H200.9300
C3—H30.9300C21—H21A0.9600
C4—C51.385 (5)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.362 (5)C22—H22A0.9600
C6—C111.416 (5)C22—H22B0.9600
C6—C121.438 (5)C22—H22C0.9600
O2—Mn1—O1106.71 (11)C9—C8—H8118.8
O2—Mn1—N1161.27 (12)C7—C8—H8118.8
O1—Mn1—N188.18 (11)C10—C9—C8120.2 (4)
O2—Mn1—N286.90 (11)C10—C9—H9119.9
O1—Mn1—N2165.18 (11)C8—C9—H9119.9
N1—Mn1—N277.35 (11)C9—C10—C11118.3 (4)
O2—Mn1—O386.03 (11)C9—C10—H10120.8
O1—Mn1—O384.97 (11)C11—C10—H10120.8
N1—Mn1—O383.99 (11)C10—C11—C6123.5 (4)
N2—Mn1—O390.27 (11)C10—C11—H11118.3
O2—Mn1—Cl195.93 (9)C6—C11—H11118.3
O1—Mn1—Cl195.06 (9)N1—C12—C6127.6 (3)
N1—Mn1—Cl193.95 (9)N1—C12—H12116.2
N2—Mn1—Cl189.19 (8)C6—C12—H12116.2
O3—Mn1—Cl1177.93 (8)C19—C13—C18115.9 (3)
C7—O1—Mn1133.6 (2)C19—C13—C14123.2 (3)
C14—O2—Mn1133.8 (2)C18—C13—C14120.8 (3)
C20—O3—Mn1123.7 (3)O2—C14—C15118.8 (4)
C12—N1—C1121.2 (3)O2—C14—C13124.6 (3)
C12—N1—Mn1124.0 (2)C15—C14—C13116.5 (3)
C1—N1—Mn1114.7 (2)C14—C15—C16120.8 (4)
C19—N2—C2119.6 (3)C14—C15—H15119.6
C19—N2—Mn1125.5 (2)C16—C15—H15119.6
C2—N2—Mn1114.5 (2)C15—C16—C17123.1 (4)
C1—N3—C5116.6 (3)C15—C16—H16118.4
C20—N4—C21121.4 (4)C17—C16—H16118.4
C20—N4—C22123.9 (4)C18—C17—C16118.0 (4)
C21—N4—C22114.7 (4)C18—C17—H17121.0
N3—C1—C2122.6 (3)C16—C17—H17121.0
N3—C1—N1119.0 (3)C17—C18—C13120.7 (4)
C2—C1—N1118.4 (3)C17—C18—H18119.7
N2—C2—C1114.1 (3)C13—C18—H18119.7
N2—C2—C3126.0 (3)N2—C19—C13125.1 (3)
C1—C2—C3119.9 (3)N2—C19—H19117.4
C4—C3—C2116.7 (3)C13—C19—H19117.4
C4—C3—H3121.7O3—C20—N4126.5 (4)
C2—C3—H3121.7O3—C20—H20116.7
C3—C4—C5120.3 (3)N4—C20—H20116.7
C3—C4—Br1118.9 (3)N4—C21—H21A109.5
C5—C4—Br1120.9 (3)N4—C21—H21B109.5
N3—C5—C4123.9 (4)H21A—C21—H21B109.5
N3—C5—H5118.1N4—C21—H21C109.5
C4—C5—H5118.1H21A—C21—H21C109.5
C7—C6—C11117.6 (3)H21B—C21—H21C109.5
C7—C6—C12123.7 (3)N4—C22—H22A109.5
C11—C6—C12118.6 (4)N4—C22—H22B109.5
O1—C7—C6122.2 (3)H22A—C22—H22B109.5
O1—C7—C8119.9 (4)N4—C22—H22C109.5
C6—C7—C8118.0 (3)H22A—C22—H22C109.5
C9—C8—C7122.5 (4)H22B—C22—H22C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C19—H19···Cl1i0.932.813.691 (2)159

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2658).

References

  • Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008a). Acta Cryst. E64, m124–m125. [PMC free article] [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008b). Acta Cryst. E64, m670–m671. [PMC free article] [PubMed]
  • Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406. [PMC free article] [PubMed]
  • Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141–3143.
  • Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography