PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1616.
Published online 2009 November 21. doi:  10.1107/S1600536809048430
PMCID: PMC2972026

Poly[μ3-acetato-di-μ3-isonicotinato-μ2-isonicotinato-samarium(III)silver(I)]

Abstract

In the title homochiral three-dimensional heterometallic complex, [AgSm(C6H4NO2)3(C2H3O2)]n, the eight-coordinate SmIII ion displays a bicapped trigonal-prismatic geometry, being coordinated by two O atoms from one acetate ligand, four O atoms from four bridging isonicotinate ligands and two O atoms from two terminal isonicotinate ligands. The four-coordinate AgI ion adopts a tetra­hedral geometry, being bonded to two N atoms from two bridging isonicotinate ligands and two O atoms from two acetate ligands. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network.

Related literature

For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006 [triangle]); Gu & Xue (2006 [triangle]); Peng et al. (2008 [triangle]); Zhu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1616-scheme1.jpg

Experimental

Crystal data

  • [AgSm(C6H4NO2)3(C2H3O2)]
  • M r = 683.58
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-65-m1616-efi4.jpg
  • a = 11.8184 (5) Å
  • c = 27.340 (2) Å
  • V = 3307.0 (3) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 3.58 mm−1
  • T = 296 K
  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.444, T max = 0.507
  • 17136 measured reflections
  • 1992 independent reflections
  • 1928 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.049
  • S = 1.06
  • 1992 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.45 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 739 Friedel pairs
  • Flack parameter: 0.006 (15)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048430/pv2235sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048430/pv2235Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Peng et al., 2008; Zhu et al., 2009). However, because of complicated interactions among the organic moiety and two types of metal centers, the construction of a homochiral Ln—M heterometallic coordination framework is one of the most challenging issues in synthetic chemistry and materials science(Gu & Xue, 2006). As an extension of this research, the structure of the title compound, a new homochiral heterometallic coordination polymer, (I), has been determined which is presented in this article.

In the title compound (Fig. 1), there are half of SmIII ion, half of AgI ion, half of acetate ligand, and one and half crystallogaphically unique isonicotinate ligands in the asymmetrical unit. Isonicotinate ligands have two types of distinctly different coordination modes: one acts as a bridging ligand to coordinate one AgI ion and two SmIII ions, and the other acts as a terminal ligand to coordinate two SmIII ions. Acetate ligand adopts chelating [SmIII] and bridging [AgI] coordination modes. Each SmIII ion is eight-coordinated by two O atoms from one acetate ligand, four O atoms from four bridging isonicotinate ligands, and two O atom from two terminal isonicotinate ligands. The Sm center can be described as having a bicapped trigonal prism coordination geometry. The four-coordinated AgI ion is bonded to two N atoms from two bridging isonicotinate ligand and two O atoms from two acetate ligands to furnish a tetrahedral geometry, (Table 1). These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2).

Experimental

A mixture of AgNO3(0.057 g, 0.33 mmol), Sm2O3(0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), acetic acid (0.080 g, 1.33 mmol), and H2O(7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.
The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) x, 1 + x-y, 1/6 - z; (B) 1 + x-y, 2 - y, -z; (C) 1 + x-y, 1 - y, -z; (D) 1 + x, 1 + y, z; (E) 1 - y, 1 - x, ...
Fig. 2.
A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

[AgSm(C6H4NO2)3(C2H3O2)]Dx = 2.059 Mg m3
Mr = 683.58Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6122Cell parameters from 7353 reflections
Hall symbol: P 61 2 (0 0 -1)θ = 2.5–27.4°
a = 11.8184 (5) ŵ = 3.58 mm1
c = 27.340 (2) ÅT = 296 K
V = 3307.0 (3) Å3Block, colorless
Z = 60.23 × 0.20 × 0.19 mm
F(000) = 1974

Data collection

Bruker APEXII area-detector diffractometer1992 independent reflections
Radiation source: fine-focus sealed tube1928 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scanθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→14
Tmin = 0.444, Tmax = 0.507k = −11→14
17136 measured reflectionsl = −32→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049w = 1/[σ2(Fo2) + (0.0242P)2 + 2.1731P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1992 reflectionsΔρmax = 0.65 e Å3
154 parametersΔρmin = −0.45 e Å3
0 restraintsAbsolute structure: Flack (1983), 739 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.006 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sm10.86531 (2)1.00000.00000.02353 (8)
Ag20.51785 (4)0.75893 (2)0.08330.03675 (12)
O10.1435 (3)0.2764 (3)−0.10025 (9)0.0409 (7)
O2−0.0057 (3)0.1970 (3)−0.04112 (10)0.0401 (7)
O30.6346 (3)0.9170 (3)0.02435 (11)0.0401 (7)
O41.0601 (3)1.0664 (3)0.04589 (11)0.0495 (8)
C10.1062 (4)0.2765 (4)−0.05754 (14)0.0312 (10)
C20.1996 (4)0.3805 (4)−0.02321 (13)0.0328 (9)
C30.1670 (4)0.3897 (4)0.02451 (15)0.0410 (12)
H40.08470.33060.03660.049*
C40.2570 (5)0.4864 (5)0.05370 (16)0.0460 (11)
H20.23280.49140.08560.055*
C50.4073 (6)0.5645 (7)−0.0058 (2)0.101 (3)
H30.49020.6253−0.01690.121*
C60.3228 (6)0.4690 (6)−0.03802 (19)0.083 (3)
H50.35000.4655−0.06960.100*
C70.6215 (5)1.00000.00000.0345 (13)
C80.4962 (7)1.00000.00000.089 (3)
H11A0.51331.0884−0.00100.133*0.50
H11B0.44810.95810.02920.133*0.50
H11C0.44580.9535−0.02820.133*0.50
C91.1136 (5)1.0568 (3)0.08330.0345 (13)
C101.2622 (6)1.1311 (3)0.08330.0375 (13)
C111.3318 (5)1.2039 (6)0.04352 (19)0.0576 (15)
H131.28891.20830.01570.069*
C121.4659 (6)1.2700 (8)0.0456 (3)0.082 (2)
H141.51121.32000.01860.099*
N10.3766 (4)0.5734 (4)0.03960 (13)0.0508 (11)
N21.5358 (7)1.2679 (4)0.08330.093 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sm10.02697 (12)0.02447 (15)0.01831 (13)0.01224 (7)0.00126 (6)0.00253 (11)
Ag20.0309 (2)0.0440 (2)0.0310 (2)0.01544 (12)0.000−0.00131 (18)
O10.0433 (18)0.0454 (18)0.0227 (14)0.0137 (15)−0.0043 (13)−0.0073 (12)
O20.0395 (17)0.0320 (16)0.0298 (15)0.0036 (14)−0.0050 (13)0.0045 (12)
O30.0345 (16)0.0457 (18)0.0413 (17)0.0210 (14)0.0125 (13)0.0158 (14)
O40.0354 (17)0.070 (2)0.0403 (17)0.0244 (15)−0.0079 (14)0.0031 (15)
C10.038 (2)0.024 (2)0.024 (2)0.0092 (18)−0.0050 (17)0.0024 (16)
C20.038 (2)0.028 (2)0.023 (2)0.009 (2)−0.0038 (18)0.0002 (17)
C30.040 (3)0.033 (2)0.031 (2)0.004 (2)0.0042 (18)−0.0024 (19)
C40.048 (3)0.042 (3)0.028 (2)0.008 (2)0.002 (2)−0.008 (2)
C50.061 (4)0.095 (5)0.045 (3)−0.037 (3)0.022 (3)−0.033 (3)
C60.066 (4)0.075 (4)0.031 (3)−0.023 (3)0.017 (3)−0.020 (3)
C70.031 (2)0.046 (3)0.031 (3)0.0231 (17)−0.0010 (15)−0.002 (3)
C80.062 (3)0.129 (9)0.098 (7)0.064 (4)0.021 (3)0.042 (7)
C90.031 (3)0.034 (2)0.037 (3)0.0156 (16)0.0000.000 (2)
C100.035 (3)0.042 (3)0.034 (3)0.0174 (16)0.0000.004 (3)
C110.041 (3)0.080 (4)0.051 (3)0.029 (3)0.011 (2)0.025 (3)
C120.055 (4)0.102 (6)0.075 (4)0.028 (4)0.026 (3)0.027 (4)
N10.042 (2)0.046 (2)0.033 (2)−0.0024 (19)−0.0019 (18)−0.0115 (17)
N20.049 (4)0.120 (6)0.086 (6)0.025 (2)0.0000.009 (5)

Geometric parameters (Å, °)

Sm1—O2i2.336 (3)C3—H40.9300
Sm1—O2ii2.336 (3)C4—N11.323 (6)
Sm1—O42.384 (3)C4—H20.9300
Sm1—O4iii2.384 (3)C5—N11.311 (6)
Sm1—O1iv2.478 (3)C5—C61.386 (7)
Sm1—O1v2.478 (3)C5—H30.9300
Sm1—O32.483 (3)C6—H50.9300
Sm1—O3iii2.483 (3)C7—O3iii1.257 (4)
Ag2—N12.316 (4)C7—C81.482 (9)
Ag2—N1vi2.316 (4)C8—H11A0.9600
Ag2—O32.328 (3)C8—H11B0.9600
Ag2—O3vi2.328 (3)C8—H11C0.9600
O1—C11.248 (5)C9—O4vi1.238 (4)
O1—Sm1vii2.478 (3)C9—C101.521 (8)
O2—C11.261 (5)C10—C111.376 (6)
O2—Sm1viii2.336 (3)C10—C11vi1.376 (6)
O3—C71.257 (4)C11—C121.374 (8)
O4—C91.238 (4)C11—H130.9300
C1—C21.501 (5)C12—N21.329 (8)
C2—C61.362 (7)C12—H140.9300
C2—C31.380 (6)N2—C12vi1.329 (8)
C3—C41.363 (6)
O2i—Sm1—O2ii162.24 (16)C9—O4—Sm1149.2 (3)
O2i—Sm1—O483.32 (11)O1—C1—O2124.9 (4)
O2ii—Sm1—O482.47 (11)O1—C1—C2118.0 (4)
O2i—Sm1—O4iii82.47 (11)O2—C1—C2117.1 (3)
O2ii—Sm1—O4iii83.32 (11)C6—C2—C3117.0 (4)
O4—Sm1—O4iii73.52 (16)C6—C2—C1120.6 (4)
O2i—Sm1—O1iv102.15 (10)C3—C2—C1122.4 (4)
O2ii—Sm1—O1iv83.83 (10)C4—C3—C2119.2 (4)
O4—Sm1—O1iv145.28 (11)C4—C3—H4120.4
O4iii—Sm1—O1iv73.30 (11)C2—C3—H4120.4
O2i—Sm1—O1v83.83 (10)N1—C4—C3124.3 (4)
O2ii—Sm1—O1v102.15 (10)N1—C4—H2117.9
O4—Sm1—O1v73.30 (11)C3—C4—H2117.9
O4iii—Sm1—O1v145.28 (11)N1—C5—C6123.5 (5)
O1iv—Sm1—O1v141.02 (16)N1—C5—H3118.3
O2i—Sm1—O3124.27 (10)C6—C5—H3118.3
O2ii—Sm1—O373.44 (10)C2—C6—C5119.6 (5)
O4—Sm1—O3132.68 (10)C2—C6—H5120.2
O4iii—Sm1—O3139.93 (12)C5—C6—H5120.2
O1iv—Sm1—O372.14 (10)O3iii—C7—O3118.3 (5)
O1v—Sm1—O372.89 (11)O3iii—C7—C8120.9 (3)
O2i—Sm1—O3iii73.44 (10)O3—C7—C8120.9 (3)
O2ii—Sm1—O3iii124.27 (10)O3iii—C7—Sm159.1 (3)
O4—Sm1—O3iii139.93 (12)O3—C7—Sm159.1 (3)
O4iii—Sm1—O3iii132.68 (10)C8—C7—Sm1180.000 (1)
O1iv—Sm1—O3iii72.89 (11)C7—C8—H11A109.5
O1v—Sm1—O3iii72.14 (10)C7—C8—H11B109.5
O3—Sm1—O3iii51.51 (13)H11A—C8—H11B109.5
O2i—Sm1—C798.88 (8)C7—C8—H11C109.5
O2ii—Sm1—C798.88 (8)H11A—C8—H11C109.5
O4—Sm1—C7143.24 (8)H11B—C8—H11C109.5
O4iii—Sm1—C7143.24 (8)O4—C9—O4vi127.5 (6)
O1iv—Sm1—C770.51 (8)O4—C9—C10116.3 (3)
O1v—Sm1—C770.51 (8)O4vi—C9—C10116.3 (3)
O3—Sm1—C725.76 (7)C11—C10—C11vi117.6 (6)
O3iii—Sm1—C725.76 (7)C11—C10—C9121.2 (3)
N1—Ag2—N1vi102.7 (2)C11vi—C10—C9121.2 (3)
N1—Ag2—O3105.05 (13)C10—C11—C12118.8 (5)
N1vi—Ag2—O3112.42 (14)C10—C11—H13120.6
N1—Ag2—O3vi112.42 (14)C12—C11—H13120.6
N1vi—Ag2—O3vi105.05 (13)N2—C12—C11125.0 (6)
O3—Ag2—O3vi118.21 (15)N2—C12—H14117.5
C1—O1—Sm1vii124.3 (3)C11—C12—H14117.5
C1—O2—Sm1viii146.4 (3)C5—N1—C4116.4 (4)
C7—O3—Ag2137.6 (3)C5—N1—Ag2117.8 (3)
C7—O3—Sm195.1 (3)C4—N1—Ag2124.7 (3)
Ag2—O3—Sm1126.58 (12)C12—N2—C12vi114.9 (7)

Symmetry codes: (i) x+1, y+1, z; (ii) xy+1, −y+1, −z; (iii) xy+1, −y+2, −z; (iv) −y+1, −x+1, −z−1/6; (v) xy+1, x+1, z+1/6; (vi) x, xy+1, −z+1/6; (vii) y−1, −x+y, z−1/6; (viii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2235).

References

  • Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gu, X. & Xue, D. (2006). Inorg. Chem. 45, 9257–9261. [PubMed]
  • Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography