PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3007.
Published online 2009 November 7. doi:  10.1107/S1600536809043992
PMCID: PMC2972022

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetra­propyn­yloxy-2,8,14,20-tetra­thia­calix[4]arene

Abstract

The title compound [systematic name: 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetra­propyn­yloxy-2,8,14,20-tetra­thia­calix[4]arene], C52H56O4S4, is an alkyl­ated product bearing four propyne groups at the lower rim of a 5,11,17,23-tetra-tert-butyl-tetrathia­calix[4]arene. The mol­ecule is located on a crystallographic twofold rotation axis, running through two S atoms and perpendicular to the long axis of the mol­ecule. The four propyne groups, located in an alternate fashion above and below the mean plane of the four S atoms, are almost parallel to the calixarene long axis. The dihedral angle between the two crystallographically independent benzene rings is 86.77 (14)°. Two tert-butyl groups are disordered over two positions with site occupancies of 0.59 (2) and 0.41 (2).

Related literature

For related structures, see: Kumagai & Hasegawa (1997 [triangle]); Kasyan et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3007-scheme1.jpg

Experimental

Crystal data

  • C52H56O4S4
  • M r = 873.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3007-efi1.jpg
  • a = 13.5662 (11) Å
  • b = 19.1815 (16) Å
  • c = 18.1595 (15) Å
  • β = 90.398 (1)°
  • V = 4725.4 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 150 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 26256 measured reflections
  • 5115 independent reflections
  • 4543 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.130
  • S = 1.06
  • 5115 reflections
  • 310 parameters
  • 39 restraints
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043992/is2455sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043992/is2455Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are greatly indebted to the Analytical and Testing Center of Huazhong University of Science and Technology for the 1H NMR and elemental analysis.

supplementary crystallographic information

Comment

The title compound, (I), possessing four propyne groups on the lower rim of 1,3-alternate thiacalix[4]arene backbone in the solid state, represents a novel example of flexible thiacalix[4]arene derivative, whose 1H NMR spectrum revealed the simultaneous presence of the partial cone (PC) and 1,3-alternate (1,3-A) conformers in 1:2 ratio at room temperature. It was prepared by the base-promoted condensation of the p-tert-butyl-thiacalixarene with 3-bromoprop-1-yne.

The single crystal of C52H56O4S4 was obtained by recrystallization from its chloroform–acetone (1:1 v/v) solution. It crystallises in the monoclinic system (space group C2/c) and there is no solvent molecule present in the lattice. The size of the thiacalixarene cavity could be defined by the distances of these sulfur atoms to the centroid formed by the four sulfur atoms, which are in the range of 3.667–3.996 Å.

The observed C—S distance, in the range of 1.777–1.781 Å, is in agreement with the one observed for the parent p-tert-butyl-thiacalixarene (1.785 Å) (Kumagai et al., 1997). For the ether junction between the calix and the pendent arms, the carbon to oxygen distances are in the range of 1.376–1.378 Å for C(Ph)—O and 1.432–1.449 Å for O—C(propyne). The four propyne groups are located in an alternate fashion below and above the main plane of the thiacalixarene. The CH2CCH fragments are almost linear with CCC angle of 177.41 and 177.56°. The pendent arms bearing the acetylene groups are oriented almost parallel to the calix long axis. The aromatic moieties on the same face of the molecule are almost parallel. It is worth noting that because of the short nature of the spacer connecting the acetylene group to the calix, the acetylene (CCH) groups are in close proximity with the tert-butyl moieties located on the same face (distance in the range of ca. 3.46–4.55 Å).

Experimental

The title compound has been prepared by a direct base-promoted condensation reaction of thiacalixarene with an excess of 3-bromoprop-1-yne. A solution of p-tert-butyl-thiacalixarene (0.5 mmol) and 3-bromoprop-1-yne (5 mmol) in dry acetone (25 ml) was refluxed for 24 h in the presence of Na2CO3. The reaction mixture was separated by column chromatography on silica gel with chloroform–petroleum ether as eluant. Single crystals of (I) were grown from a chloroform–acetone (1:1 v/v) solution and was stable in air. 1H NMR study revealed that the powder was composed of the title compound in both PC and 1,3-A conformations in a 1:2 ratio in CDCl3 solution at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 1.08 (s, 18H, PC), 1.27 (s, 36H, 1,3-A.), 1.31 (s, 9H, PC), 1.43 (s, 9H, PC), 2.19 (s, 1H, PC), 2.43 (s, 4H, 1,3-A.), 2.53 (s, 3H, PC),4.50 (s, 2H, PC), 4.69 (d, 8H, J =2.1Hz, 1,3-A.), 4.79 (s, 6H, PC), 7.05 (d, 2H, J = 2.1 Hz, PC), 7.53 (s, 2H,, PC), 7.58 (s, 8H, 1,3-A); ; 7.90 (s, 2H, PC); analysis, calculated for C52H56O4S4: C 71.52, H 6.46, S 14.69%; found: C 71.37, H 6.40, S 14.62%.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C). One of the tert-butyl groups of each thiacalixarene molecule is disordered over two positions with site occupancies of 0.59 (2) and 0.41 (2), resulting in bond distances that deviate from ideal values. The restraints on the C—C bond distance (SADI) and on displacement parameters (ISOR) were applied for the disordered tert-butyl group. The crystal used was a partial twin; the twin matrix was (100/010/001). The fraction of the minor domain was refined to 0.0531 (7).

Figures

Fig. 1.
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. One of the tert-butyl group attached to the phenyl rings was found to be disordered over two positions and only one part of ...

Crystal data

C52H56O4S4F(000) = 1856
Mr = 873.21Dx = 1.227 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9940 reflections
a = 13.5662 (11) Åθ = 2.2–28.3°
b = 19.1815 (16) ŵ = 0.25 mm1
c = 18.1595 (15) ÅT = 150 K
β = 90.398 (1)°Block, colorless
V = 4725.4 (7) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4543 reflections with I > 2σ(I)
Radiation source: fine focus sealed Siemens Mo tubeRint = 0.028
graphiteθmax = 27.0°, θmin = 1.1°
0.3° wide ω exposures scansh = −17→15
26256 measured reflectionsk = −24→24
5115 independent reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0816P)2 + 2.5666P] where P = (Fo2 + 2Fc2)/3
5115 reflections(Δ/σ)max = 0.002
310 parametersΔρmax = 0.38 e Å3
39 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.48682 (12)0.76830 (9)0.14123 (9)0.0244 (3)
C20.43521 (13)0.72657 (8)0.19086 (9)0.0248 (3)
C30.33290 (13)0.72817 (8)0.19175 (10)0.0250 (3)
H30.29880.69990.22610.030*
C40.27892 (13)0.77027 (8)0.14345 (9)0.0241 (3)
C50.33161 (13)0.81294 (9)0.09602 (9)0.0251 (3)
H50.29670.84310.06360.030*
C60.43391 (13)0.81261 (9)0.09481 (9)0.0248 (3)
C70.16650 (13)0.77476 (10)0.14820 (11)0.0318 (4)
C80.1182 (5)0.7075 (3)0.1744 (7)0.0491 (19)0.59 (2)
H8A0.14360.69550.22340.074*0.59 (2)
H8B0.13340.66980.13990.074*0.59 (2)
H8C0.04670.71400.17660.074*0.59 (2)
C90.1460 (6)0.8308 (4)0.2071 (4)0.0514 (19)0.59 (2)
H9A0.07470.83760.21160.077*0.59 (2)
H9B0.17690.87480.19250.077*0.59 (2)
H9C0.17330.81560.25450.077*0.59 (2)
C100.1194 (11)0.7981 (8)0.0760 (5)0.055 (3)0.59 (2)
H10A0.04770.80010.08160.083*0.59 (2)
H10B0.13600.76490.03700.083*0.59 (2)
H10C0.14430.84450.06290.083*0.59 (2)
C110.50988 (12)0.96579 (8)0.14291 (9)0.0224 (3)
C120.56075 (13)0.92436 (9)0.09304 (9)0.0239 (3)
C130.66255 (13)0.92995 (9)0.08692 (9)0.0241 (3)
H130.69600.90120.05260.029*
C140.71670 (12)0.97671 (9)0.12982 (9)0.0231 (3)
C150.66507 (13)1.01550 (9)0.18251 (9)0.0243 (3)
H150.70041.04600.21430.029*
C160.56335 (13)1.01026 (8)0.18924 (9)0.0232 (3)
C170.82759 (13)0.98826 (10)0.11823 (10)0.0276 (4)
C180.87520 (15)0.92647 (11)0.07943 (13)0.0395 (5)
H18A0.86470.88410.10840.059*
H18B0.94610.93490.07440.059*
H18C0.84540.92070.03050.059*
C190.88093 (15)1.00021 (14)0.19170 (12)0.0432 (5)
H19A0.85611.04300.21460.065*
H19B0.95191.00480.18310.065*
H19C0.86890.96050.22450.065*
C200.83994 (16)1.05423 (11)0.07084 (12)0.0388 (5)
H20A0.80681.04750.02330.058*
H20B0.91021.06300.06290.058*
H20C0.81071.09420.09620.058*
C210.62688 (15)0.71823 (12)0.08857 (12)0.0418 (5)
H21A0.60970.73310.03790.050*
H21B0.59770.67170.09710.050*
C220.73363 (16)0.71483 (12)0.09731 (13)0.0439 (5)
C230.81945 (18)0.70994 (15)0.10290 (16)0.0587 (7)
H230.88900.70600.10740.070*
C240.36289 (14)1.01176 (11)0.09750 (11)0.0363 (5)
H24A0.37180.99560.04620.044*
H24B0.39431.05810.10260.044*
C250.25865 (15)1.01698 (11)0.11376 (10)0.0372 (4)
C260.17363 (17)1.02289 (16)0.12435 (13)0.0557 (7)
H260.10501.02770.13290.067*
O10.58854 (9)0.76737 (7)0.14086 (7)0.0292 (3)
O20.40865 (8)0.96324 (6)0.14765 (6)0.0253 (3)
S10.50000.66803 (3)0.25000.02986 (16)
S20.49578 (3)0.86815 (2)0.03174 (2)0.02872 (14)
S30.50001.06748 (3)0.25000.02795 (16)
C8'0.1289 (8)0.6988 (4)0.1405 (11)0.057 (3)0.41 (2)
H8'10.15430.67080.18160.085*0.41 (2)
H8'20.15200.67910.09400.085*0.41 (2)
H8'30.05670.69850.14120.085*0.41 (2)
C9'0.1361 (14)0.8091 (11)0.2190 (6)0.085 (5)0.41 (2)
H9'10.06610.82150.21620.128*0.41 (2)
H9'20.17540.85130.22690.128*0.41 (2)
H9'30.14690.77680.26010.128*0.41 (2)
C10'0.1209 (12)0.8110 (9)0.0812 (7)0.032 (2)0.41 (2)
H10D0.04910.80600.08250.048*0.41 (2)
H10E0.14620.78960.03610.048*0.41 (2)
H10F0.13830.86060.08200.048*0.41 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0181 (8)0.0254 (8)0.0297 (8)−0.0020 (6)0.0019 (6)−0.0092 (6)
C20.0221 (8)0.0204 (8)0.0319 (8)−0.0015 (6)−0.0004 (6)−0.0048 (6)
C30.0214 (8)0.0205 (8)0.0332 (9)−0.0037 (6)0.0025 (7)−0.0022 (6)
C40.0210 (8)0.0199 (8)0.0314 (8)−0.0029 (6)0.0012 (6)−0.0055 (6)
C50.0223 (9)0.0250 (8)0.0281 (8)−0.0025 (6)0.0000 (6)−0.0031 (6)
C60.0232 (9)0.0274 (9)0.0239 (8)−0.0064 (7)0.0038 (6)−0.0058 (6)
C70.0197 (9)0.0307 (9)0.0449 (10)−0.0021 (7)0.0036 (7)0.0073 (8)
C80.025 (2)0.042 (3)0.080 (5)−0.0074 (17)0.006 (3)0.028 (3)
C90.032 (3)0.067 (4)0.056 (3)−0.001 (2)0.023 (2)−0.015 (3)
C100.035 (4)0.076 (8)0.055 (4)−0.006 (4)−0.001 (3)0.001 (3)
C110.0194 (8)0.0240 (8)0.0240 (8)−0.0022 (6)0.0029 (6)0.0057 (6)
C120.0241 (9)0.0262 (8)0.0213 (7)−0.0050 (6)0.0012 (6)0.0023 (6)
C130.0234 (9)0.0273 (9)0.0218 (7)−0.0024 (6)0.0036 (6)0.0018 (6)
C140.0190 (8)0.0251 (8)0.0253 (8)−0.0023 (6)0.0013 (6)0.0049 (6)
C150.0246 (9)0.0215 (8)0.0268 (8)−0.0037 (6)0.0004 (7)0.0014 (6)
C160.0256 (9)0.0189 (8)0.0251 (8)−0.0001 (6)0.0052 (6)0.0031 (6)
C170.0204 (9)0.0344 (10)0.0280 (8)−0.0053 (7)0.0024 (7)0.0004 (7)
C180.0238 (10)0.0415 (11)0.0531 (12)0.0001 (8)0.0050 (8)−0.0054 (9)
C190.0247 (10)0.0694 (15)0.0356 (10)−0.0110 (9)−0.0030 (8)0.0000 (10)
C200.0334 (11)0.0405 (11)0.0425 (11)−0.0113 (8)0.0095 (8)0.0067 (9)
C210.0270 (10)0.0521 (13)0.0464 (11)0.0055 (9)0.0068 (8)−0.0188 (10)
C220.0341 (12)0.0503 (13)0.0475 (12)0.0055 (9)0.0112 (9)−0.0090 (10)
C230.0291 (12)0.0713 (18)0.0759 (18)0.0093 (11)0.0086 (11)−0.0144 (14)
C240.0261 (10)0.0478 (12)0.0350 (10)0.0047 (8)0.0002 (8)0.0158 (8)
C250.0314 (11)0.0510 (12)0.0292 (9)0.0058 (9)−0.0025 (8)0.0082 (8)
C260.0304 (12)0.095 (2)0.0414 (12)0.0149 (12)0.0018 (9)0.0193 (12)
O10.0174 (6)0.0349 (7)0.0355 (7)−0.0009 (5)0.0024 (5)−0.0089 (5)
O20.0189 (6)0.0302 (6)0.0268 (6)−0.0001 (5)0.0016 (5)0.0069 (5)
S10.0241 (3)0.0191 (3)0.0463 (4)0.000−0.0038 (3)0.000
S20.0245 (2)0.0405 (3)0.0213 (2)−0.01046 (17)0.00285 (17)−0.00272 (16)
S30.0301 (3)0.0176 (3)0.0362 (3)0.0000.0093 (3)0.000
C8'0.019 (3)0.058 (4)0.093 (7)−0.011 (3)−0.012 (4)0.041 (4)
C9'0.055 (6)0.139 (9)0.064 (5)0.028 (7)0.027 (4)0.012 (6)
C10'0.010 (4)0.030 (4)0.055 (5)0.002 (2)−0.005 (3)0.018 (3)

Geometric parameters (Å, °)

C1—O11.380 (2)C15—H150.9500
C1—C61.393 (2)C16—S31.7815 (17)
C1—C21.397 (2)C17—C181.525 (3)
C2—C31.389 (2)C17—C191.531 (3)
C2—S11.7815 (18)C17—C201.540 (3)
C3—C41.396 (2)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.390 (2)C18—H18C0.9800
C4—C71.531 (2)C19—H19A0.9800
C5—C61.388 (2)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—S21.7790 (17)C20—H20A0.9800
C7—C9'1.505 (8)C20—H20B0.9800
C7—C101.522 (6)C20—H20C0.9800
C7—C81.524 (5)C21—O11.438 (2)
C7—C10'1.528 (6)C21—C221.457 (3)
C7—C91.543 (5)C21—H21A0.9900
C7—C8'1.549 (7)C21—H21B0.9900
C8—H8A0.9800C22—C231.172 (3)
C8—H8B0.9800C23—H230.9500
C8—H8C0.9800C24—O21.440 (2)
C9—H9A0.9800C24—C251.450 (3)
C9—H9B0.9800C24—H24A0.9900
C9—H9C0.9800C24—H24B0.9900
C10—H10A0.9800C25—C261.176 (3)
C10—H10B0.9800C26—H260.9500
C10—H10C0.9800S1—C2i1.7815 (18)
C11—O21.377 (2)S3—C16i1.7815 (17)
C11—C121.392 (2)C8'—H8'10.9800
C11—C161.398 (2)C8'—H8'20.9800
C12—C131.390 (2)C8'—H8'30.9800
C12—S21.7790 (17)C9'—H9'10.9800
C13—C141.394 (2)C9'—H9'20.9800
C13—H130.9500C9'—H9'30.9800
C14—C151.403 (2)C10'—H10D0.9800
C14—C171.536 (2)C10'—H10E0.9800
C15—C161.390 (2)C10'—H10F0.9800
O1—C1—C6121.07 (15)C18—C17—C20109.41 (16)
O1—C1—C2120.09 (15)C19—C17—C20108.15 (16)
C6—C1—C2118.78 (15)C14—C17—C20107.78 (15)
C3—C2—C1120.03 (16)C17—C18—H18A109.5
C3—C2—S1119.73 (13)C17—C18—H18B109.5
C1—C2—S1120.17 (13)H18A—C18—H18B109.5
C2—C3—C4121.70 (16)C17—C18—H18C109.5
C2—C3—H3119.1H18A—C18—H18C109.5
C4—C3—H3119.1H18B—C18—H18C109.5
C5—C4—C3117.41 (16)C17—C19—H19A109.5
C5—C4—C7121.24 (16)C17—C19—H19B109.5
C3—C4—C7121.05 (15)H19A—C19—H19B109.5
C6—C5—C4121.70 (17)C17—C19—H19C109.5
C6—C5—H5119.1H19A—C19—H19C109.5
C4—C5—H5119.1H19B—C19—H19C109.5
C5—C6—C1120.30 (16)C17—C20—H20A109.5
C5—C6—S2118.91 (14)C17—C20—H20B109.5
C1—C6—S2120.78 (13)H20A—C20—H20B109.5
C10—C7—C8109.8 (7)C17—C20—H20C109.5
C9'—C7—C10'111.7 (10)H20A—C20—H20C109.5
C9'—C7—C4110.6 (8)H20B—C20—H20C109.5
C10—C7—C4112.4 (6)O1—C21—C22108.74 (17)
C8—C7—C4113.6 (3)O1—C21—H21A109.9
C10'—C7—C4112.2 (7)C22—C21—H21A109.9
C10—C7—C9108.3 (7)O1—C21—H21B109.9
C8—C7—C9107.1 (4)C22—C21—H21B109.9
C4—C7—C9105.3 (4)H21A—C21—H21B108.3
C9'—C7—C8'113.3 (7)C23—C22—C21177.6 (3)
C10'—C7—C8'103.0 (8)C22—C23—H23180.0
C4—C7—C8'105.6 (5)O2—C24—C25109.43 (15)
C7—C8—H8A109.5O2—C24—H24A109.8
C7—C8—H8B109.5C25—C24—H24A109.8
C7—C8—H8C109.5O2—C24—H24B109.8
C7—C9—H9A109.5C25—C24—H24B109.8
C7—C9—H9B109.5H24A—C24—H24B108.2
C7—C9—H9C109.5C26—C25—C24177.2 (2)
C7—C10—H10A109.5C25—C26—H26180.0
C7—C10—H10B109.5C1—O1—C21112.21 (13)
C7—C10—H10C109.5C11—O2—C24111.29 (13)
O2—C11—C12121.30 (14)C2—S1—C2i101.86 (11)
O2—C11—C16119.83 (15)C6—S2—C12101.19 (7)
C12—C11—C16118.86 (15)C16—S3—C16i103.93 (11)
C13—C12—C11120.35 (15)C7—C8'—H8'1109.5
C13—C12—S2119.00 (13)C7—C8'—H8'2109.5
C11—C12—S2120.50 (13)H8'1—C8'—H8'2109.5
C12—C13—C14121.66 (16)C7—C8'—H8'3109.5
C12—C13—H13119.2H8'1—C8'—H8'3109.5
C14—C13—H13119.2H8'2—C8'—H8'3109.5
C13—C14—C15117.30 (15)C7—C9'—H9'1109.5
C13—C14—C17121.93 (15)C7—C9'—H9'2109.5
C15—C14—C17120.71 (15)H9'1—C9'—H9'2109.5
C16—C15—C14121.48 (15)C7—C9'—H9'3109.5
C16—C15—H15119.3H9'1—C9'—H9'3109.5
C14—C15—H15119.3H9'2—C9'—H9'3109.5
C15—C16—C11120.17 (15)C7—C10'—H10D109.5
C15—C16—S3119.57 (13)C7—C10'—H10E109.5
C11—C16—S3119.89 (13)H10D—C10'—H10E109.5
C18—C17—C19108.66 (17)C7—C10'—H10F109.5
C18—C17—C14111.68 (15)H10D—C10'—H10F109.5
C19—C17—C14111.07 (15)H10E—C10'—H10F109.5
O1—C1—C2—C3179.25 (14)C11—C12—C13—C14−0.1 (2)
C6—C1—C2—C31.9 (2)S2—C12—C13—C14175.43 (13)
O1—C1—C2—S1−3.8 (2)C12—C13—C14—C153.3 (2)
C6—C1—C2—S1178.85 (12)C12—C13—C14—C17−174.00 (15)
C1—C2—C3—C40.6 (3)C13—C14—C15—C16−3.2 (2)
S1—C2—C3—C4−176.28 (13)C17—C14—C15—C16174.18 (15)
C2—C3—C4—C5−2.5 (2)C14—C15—C16—C11−0.2 (2)
C2—C3—C4—C7−176.29 (15)C14—C15—C16—S3−173.19 (13)
C3—C4—C5—C61.8 (2)O2—C11—C16—C15−177.05 (14)
C7—C4—C5—C6175.61 (16)C12—C11—C16—C153.5 (2)
C4—C5—C6—C10.7 (3)O2—C11—C16—S3−4.1 (2)
C4—C5—C6—S2179.33 (13)C12—C11—C16—S3176.46 (12)
O1—C1—C6—C5−179.88 (14)C13—C14—C17—C18−22.1 (2)
C2—C1—C6—C5−2.6 (2)C15—C14—C17—C18160.62 (16)
O1—C1—C6—S21.5 (2)C13—C14—C17—C19−143.60 (18)
C2—C1—C6—S2178.80 (12)C15—C14—C17—C1939.1 (2)
C5—C4—C7—C9'−107.1 (9)C13—C14—C17—C2098.09 (19)
C3—C4—C7—C9'66.5 (9)C15—C14—C17—C20−79.2 (2)
C5—C4—C7—C1029.2 (7)C6—C1—O1—C21−89.5 (2)
C3—C4—C7—C10−157.3 (7)C2—C1—O1—C2193.3 (2)
C5—C4—C7—C8154.7 (6)C22—C21—O1—C1−173.78 (17)
C3—C4—C7—C8−31.8 (6)C12—C11—O2—C24−88.73 (19)
C5—C4—C7—C10'18.5 (8)C16—C11—O2—C2491.80 (18)
C3—C4—C7—C10'−168.0 (8)C25—C24—O2—C11−169.36 (16)
C5—C4—C7—C9−88.5 (4)C3—C2—S1—C2i−115.53 (15)
C3—C4—C7—C985.0 (4)C1—C2—S1—C2i67.56 (12)
C5—C4—C7—C8'130.0 (7)C5—C6—S2—C12116.61 (14)
C3—C4—C7—C8'−56.5 (7)C1—C6—S2—C12−64.77 (15)
O2—C11—C12—C13177.19 (14)C13—C12—S2—C6123.77 (14)
C16—C11—C12—C13−3.3 (2)C11—C12—S2—C6−60.69 (15)
O2—C11—C12—S21.7 (2)C15—C16—S3—C16i−123.33 (16)
C16—C11—C12—S2−178.81 (12)C11—C16—S3—C16i63.63 (12)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2455).

References

  • Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kasyan, O., Kalchenko, V., Böhmer, V. & Bolte, M. (2007). Acta Cryst. E63, o2346–o2348.
  • Kumagai, H. & Hasegawa, S. (1997). Tetrahedron Lett. 38, 3971–3974.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography