PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3066.
Published online 2009 November 11. doi:  10.1107/S1600536809046248
PMCID: PMC2972021

3-(1-Phenyl­ethyl)-1,3-thia­zinane-2-thione

Abstract

In the title mol­ecule, C12H15NS2, the 1,3-thia­zinane ring has a half-boat conformation; the C atom at position 5 deviates by 0.715 (2) Å from the mean plane (P) of the remaining five atoms. Plane P and the phenyl ring form a dihedral angle of 83.62 (3)°. In the crystal structure, weak inter­molecular C—H(...)S hydrogen bonds link mol­ecules related by translation along the axis a into chains.

Related literature

For the crystal structures of related thia­zinane derivatives, see: Kálmán et al. (1977 [triangle]); Peng & Wu (2009 [triangle]); Amir et al. (2006 [triangle]). For the biological activity of thia­zinane-containing compounds, see: Soloway et al. (1978 [triangle]); Tomizawa et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3066-scheme1.jpg

Experimental

Crystal data

  • C12H15NS2
  • M r = 237.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3066-efi1.jpg
  • a = 7.0169 (4) Å
  • b = 15.5107 (9) Å
  • c = 11.0349 (7) Å
  • β = 102.391 (3)°
  • V = 1173.03 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 113 K
  • 0.26 × 0.10 × 0.08 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.899, T max = 0.967
  • 14476 measured reflections
  • 2798 independent reflections
  • 2631 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.087
  • S = 1.13
  • 2798 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL .

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046248/cv2647sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046248/cv2647Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Many compounds containing thiazinane groups possess a broad spectrum of biological activities (Soloway et al., 1978; Tomizawa et al., 1995). Herein we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are in a good agreement with those reported previously (Kálmán et al., 1977; Peng & Wu, 2009; Amir et al., 2006). The thiazinane ring shows a conformation near to a half boat with the carbon atom at position 5 (C3) deviating 0.715 (2) Å above the plane p1 formed by S2, N1, C1, C2 and C4 [maximum least squares plane deviation for S2 0.038 (3) Å]. The dihedral angle between the benzene ring C7-C12 and plane p1 is 83.62 (3) °. In the crystal structure, weak intermolecular C—H···S hydrogen bonds link molecules related by translation along axis a into chains.

Experimental

A solution of 1,3-thiazinane-2-thione (1.33 g, 10 mmol) and sodium hydride (0.3 g) dissolved in anhydrous acetonitrile (20 ml), and dropwise added over a period of 10 min to a solution of 1-(1-chloroethyl)benzene (1.41g, 10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 2 h. The solvent was removed and the residue was purified by flash chromatography (3:1 Cyclohexane:Dichloromethane) to give title compound as a white solid (1.90 g, 80%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms and 1.5Ueq(C) for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C12H15NS2F(000) = 504
Mr = 237.37Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 3792 reflections
a = 7.0169 (4) Åθ = 2.3–27.9°
b = 15.5107 (9) ŵ = 0.42 mm1
c = 11.0349 (7) ÅT = 113 K
β = 102.391 (3)°Prism, colourless
V = 1173.03 (12) Å30.26 × 0.10 × 0.08 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2798 independent reflections
Radiation source: rotating anode2631 reflections with I > 2σ(I)
confocalRint = 0.040
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω scansh = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −19→20
Tmin = 0.899, Tmax = 0.967l = −14→14
14476 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.034P)2 + 0.4071P] where P = (Fo2 + 2Fc2)/3
2798 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.23060 (6)0.17662 (3)0.70183 (4)0.03009 (13)
S21.02102 (6)0.13716 (3)0.45696 (4)0.02633 (12)
N10.86777 (18)0.11187 (8)0.65929 (12)0.0193 (3)
C11.0203 (2)0.13813 (10)0.61536 (15)0.0208 (3)
C20.6824 (2)0.08125 (10)0.58027 (14)0.0215 (3)
H2A0.57550.09050.62470.026*
H2B0.69230.01850.56630.026*
C30.6315 (2)0.12648 (10)0.45586 (15)0.0225 (3)
H3A0.49930.10880.41150.027*
H3B0.63020.18960.46900.027*
C40.7771 (2)0.10468 (11)0.37795 (15)0.0262 (4)
H4A0.74100.13460.29700.031*
H4B0.77490.04180.36210.031*
C50.8766 (2)0.11054 (10)0.79582 (14)0.0207 (3)
H51.01670.11760.83830.025*
C60.7662 (2)0.18756 (10)0.83194 (15)0.0245 (3)
H6A0.82770.24100.81240.037*
H6B0.76920.18540.92110.037*
H6C0.63050.18580.78550.037*
C70.8115 (2)0.02299 (10)0.83270 (14)0.0203 (3)
C80.9420 (3)−0.04584 (11)0.84269 (15)0.0250 (4)
H81.0682−0.03660.82680.030*
C90.8901 (3)−0.12754 (11)0.87548 (16)0.0316 (4)
H90.9796−0.17400.88040.038*
C100.7074 (3)−0.14124 (11)0.90105 (16)0.0316 (4)
H100.6718−0.19700.92430.038*
C110.5777 (3)−0.07356 (11)0.89258 (15)0.0283 (4)
H110.4528−0.08280.91050.034*
C120.6284 (2)0.00820 (10)0.85792 (14)0.0235 (3)
H120.53730.05420.85150.028*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0166 (2)0.0355 (3)0.0367 (3)−0.00502 (17)0.00244 (18)−0.00113 (19)
S20.0240 (2)0.0303 (2)0.0266 (2)−0.00098 (17)0.00950 (17)0.00309 (17)
N10.0157 (6)0.0211 (6)0.0203 (6)−0.0016 (5)0.0020 (5)−0.0005 (5)
C10.0177 (7)0.0165 (7)0.0282 (8)0.0027 (6)0.0048 (6)0.0007 (6)
C20.0181 (7)0.0238 (8)0.0217 (8)−0.0045 (6)0.0022 (6)−0.0013 (6)
C30.0214 (8)0.0218 (8)0.0225 (8)−0.0018 (6)0.0009 (6)0.0000 (6)
C40.0290 (9)0.0280 (9)0.0211 (8)−0.0021 (7)0.0043 (7)0.0007 (7)
C50.0178 (7)0.0244 (8)0.0188 (7)0.0005 (6)0.0015 (6)−0.0017 (6)
C60.0259 (8)0.0218 (8)0.0245 (8)0.0006 (7)0.0025 (7)−0.0032 (6)
C70.0224 (8)0.0226 (8)0.0149 (7)0.0008 (6)0.0016 (6)−0.0019 (6)
C80.0257 (8)0.0275 (8)0.0204 (8)0.0067 (7)0.0019 (6)−0.0023 (6)
C90.0421 (11)0.0241 (8)0.0249 (8)0.0105 (8)−0.0008 (8)−0.0027 (7)
C100.0484 (11)0.0207 (8)0.0227 (8)−0.0016 (8)0.0012 (8)0.0016 (7)
C110.0328 (9)0.0301 (9)0.0225 (8)−0.0051 (7)0.0071 (7)0.0019 (7)
C120.0251 (8)0.0241 (8)0.0210 (8)0.0033 (7)0.0043 (6)0.0002 (6)

Geometric parameters (Å, °)

S1—C11.6851 (16)C5—H51.0000
S2—C11.7491 (17)C6—H6A0.9800
S2—C41.8172 (17)C6—H6B0.9800
N1—C11.330 (2)C6—H6C0.9800
N1—C21.4803 (19)C7—C121.390 (2)
N1—C51.495 (2)C7—C81.395 (2)
C2—C31.515 (2)C8—C91.388 (2)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—C101.387 (3)
C3—C41.508 (2)C9—H90.9500
C3—H3A0.9900C10—C111.379 (3)
C3—H3B0.9900C10—H100.9500
C4—H4A0.9900C11—C121.393 (2)
C4—H4B0.9900C11—H110.9500
C5—C71.516 (2)C12—H120.9500
C5—C61.523 (2)
C1—S2—C4106.11 (8)N1—C5—H5107.2
C1—N1—C2123.90 (13)C7—C5—H5107.2
C1—N1—C5120.59 (13)C6—C5—H5107.2
C2—N1—C5115.50 (12)C5—C6—H6A109.5
N1—C1—S1125.27 (13)C5—C6—H6B109.5
N1—C1—S2122.45 (12)H6A—C6—H6B109.5
S1—C1—S2112.27 (9)C5—C6—H6C109.5
N1—C2—C3113.06 (13)H6A—C6—H6C109.5
N1—C2—H2A109.0H6B—C6—H6C109.5
C3—C2—H2A109.0C12—C7—C8118.47 (15)
N1—C2—H2B109.0C12—C7—C5123.11 (14)
C3—C2—H2B109.0C8—C7—C5118.42 (14)
H2A—C2—H2B107.8C9—C8—C7120.99 (16)
C4—C3—C2110.86 (13)C9—C8—H8119.5
C4—C3—H3A109.5C7—C8—H8119.5
C2—C3—H3A109.5C10—C9—C8119.90 (16)
C4—C3—H3B109.5C10—C9—H9120.0
C2—C3—H3B109.5C8—C9—H9120.0
H3A—C3—H3B108.1C11—C10—C9119.66 (16)
C3—C4—S2110.36 (11)C11—C10—H10120.2
C3—C4—H4A109.6C9—C10—H10120.2
S2—C4—H4A109.6C10—C11—C12120.52 (17)
C3—C4—H4B109.6C10—C11—H11119.7
S2—C4—H4B109.6C12—C11—H11119.7
H4A—C4—H4B108.1C7—C12—C11120.44 (15)
N1—C5—C7109.47 (12)C7—C12—H12119.8
N1—C5—C6109.85 (13)C11—C12—H12119.8
C7—C5—C6115.64 (13)
C2—N1—C1—S1177.75 (11)C2—N1—C5—C6−78.27 (16)
C5—N1—C1—S1−3.2 (2)N1—C5—C7—C12−103.30 (16)
C2—N1—C1—S2−1.5 (2)C6—C5—C7—C1221.4 (2)
C5—N1—C1—S2177.55 (11)N1—C5—C7—C877.19 (17)
C4—S2—C1—N14.98 (15)C6—C5—C7—C8−158.12 (14)
C4—S2—C1—S1−174.33 (8)C12—C7—C8—C90.8 (2)
C1—N1—C2—C3−33.2 (2)C5—C7—C8—C9−179.67 (15)
C5—N1—C2—C3147.72 (13)C7—C8—C9—C10−1.2 (3)
N1—C2—C3—C466.05 (17)C8—C9—C10—C110.6 (3)
C2—C3—C4—S2−59.48 (16)C9—C10—C11—C120.4 (3)
C1—S2—C4—C325.10 (14)C8—C7—C12—C110.2 (2)
C1—N1—C5—C7−129.39 (14)C5—C7—C12—C11−179.36 (15)
C2—N1—C5—C749.72 (17)C10—C11—C12—C7−0.7 (2)
C1—N1—C5—C6102.62 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6C···S1i0.982.763.7279 (17)168

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2647).

References

  • Amir, N., Motonishi, M., Fujita, M., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2006). Eur. J. Inorg. Chem. pp. 1041–1049.
  • Kálmán, A., Argay, G., Riba’r, B. & Toldy, L. (1977). Tetrahedron Lett. 48, 4241–4244.
  • Peng, Y. & Wu, L. (2009). Acta Cryst. E65, o784. [PMC free article] [PubMed]
  • Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene Heterocycles as Insecticides, in Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153–158. New York: Plenum Press.
  • Tomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pesticide Sci 20, 49–56.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography