PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3210.
Published online 2009 November 25. doi:  10.1107/S1600536809049563
PMCID: PMC2972019

2,4-Dimethyl-N-(2-methyl­phen­yl)benzene­sulfonamide

Abstract

In the title compound, C15H17NO2S, the mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 71.6 (1)°. The two benzene rings are tilted by 47.0 (1)° relative to each other. The crystal structure features inversion-related dimers linked by pairs of N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2008 [triangle]; 2009a [triangle],b [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3210-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S
  • M r = 275.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3210-efi1.jpg
  • a = 8.1789 (8) Å
  • b = 8.2659 (9) Å
  • c = 11.005 (1) Å
  • α = 96.249 (9)°
  • β = 96.078 (9)°
  • γ = 106.782 (9)°
  • V = 700.68 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 299 K
  • 0.48 × 0.26 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.898, T max = 0.973
  • 4894 measured reflections
  • 2862 independent reflections
  • 2446 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.116
  • S = 1.05
  • 2862 reflections
  • 178 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049563/ci2971sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049563/ci2971Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; 2009a,b), in the present work, the structure of 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 71.6 (1)°, compared with the values of 73.0 (2)° in 4-chloro-2-methyl-N-(2-methylphenyl)benzenesulfonamide (II) (Gowda et al. 2009b), -46.1 (3)° (molecule 1) and 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (III) (Gowda et al. 2009a) and 72.0 (2)° in N-(2-methylphenyl)benzenesulfonamide (IV) (Gowda et al., 2008). The two benzene rings in (I) are tilted relative to each other by 47.0 (1)°, compared to the values of 45.8 (1)° in (II), 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (III), and 61.5 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides(Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) is characterized by N—H···O hydrogen bonds (Table 1, Fig.2).

Experimental

A solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its position was refined with the N-H distance restrained to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C-H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C15H17NO2SZ = 2
Mr = 275.36F(000) = 292
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1789 (8) ÅCell parameters from 2978 reflections
b = 8.2659 (9) Åθ = 3.0–27.9°
c = 11.005 (1) ŵ = 0.23 mm1
α = 96.249 (9)°T = 299 K
β = 96.078 (9)°Prism, colourless
γ = 106.782 (9)°0.48 × 0.26 × 0.12 mm
V = 700.68 (12) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2862 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
graphiteRint = 0.010
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −10→10
Tmin = 0.898, Tmax = 0.973k = −10→7
4894 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.064P)2 + 0.2128P] where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1125 (2)0.5794 (2)0.78239 (16)0.0390 (4)
C20.2116 (2)0.6728 (2)0.89249 (16)0.0440 (4)
C30.1243 (3)0.7397 (3)0.97740 (17)0.0496 (4)
H30.18760.80301.05130.060*
C4−0.0514 (3)0.7168 (2)0.95762 (18)0.0480 (4)
C5−0.1451 (2)0.6234 (3)0.84761 (18)0.0505 (4)
H5−0.26330.60630.83220.061*
C6−0.0645 (2)0.5551 (2)0.76046 (17)0.0458 (4)
H6−0.12870.49250.68660.055*
C70.4102 (2)0.7886 (2)0.61387 (14)0.0380 (4)
C80.3900 (2)0.9481 (2)0.64940 (15)0.0432 (4)
C90.5397 (3)1.0860 (3)0.68291 (19)0.0599 (5)
H90.53041.19440.70530.072*
C100.7000 (3)1.0659 (3)0.6837 (2)0.0693 (7)
H100.79781.16000.70750.083*
C110.7175 (3)0.9075 (3)0.6495 (2)0.0691 (7)
H110.82680.89420.65110.083*
C120.5722 (2)0.7676 (3)0.61251 (19)0.0525 (5)
H120.58310.66070.58700.063*
C130.4036 (3)0.7076 (3)0.9262 (2)0.0642 (6)
H13A0.46270.76640.86540.077*
H13B0.42870.60140.92900.077*
H13C0.44160.77711.00570.077*
C14−0.1363 (3)0.7946 (3)1.0542 (2)0.0660 (6)
H14A−0.04970.86231.12060.079*
H14B−0.21690.70531.08550.079*
H14C−0.19600.86571.01760.079*
C150.2154 (3)0.9733 (2)0.6503 (2)0.0583 (5)
H15A0.16000.91670.71350.070*
H15B0.14620.92610.57140.070*
H15C0.22831.09320.66670.070*
N10.26247 (19)0.64126 (19)0.57272 (13)0.0409 (3)
H1N0.175 (2)0.659 (3)0.5378 (18)0.049*
O10.06289 (17)0.36111 (16)0.58290 (13)0.0527 (3)
O20.35102 (17)0.45144 (17)0.70879 (13)0.0524 (3)
S10.20156 (5)0.49271 (5)0.65960 (4)0.04048 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0394 (9)0.0368 (8)0.0420 (9)0.0129 (7)0.0056 (7)0.0065 (7)
C20.0413 (9)0.0472 (9)0.0434 (9)0.0139 (8)0.0035 (7)0.0074 (7)
C30.0527 (11)0.0531 (11)0.0422 (9)0.0177 (9)0.0034 (8)0.0025 (8)
C40.0538 (11)0.0481 (10)0.0500 (10)0.0232 (9)0.0146 (8)0.0127 (8)
C50.0404 (9)0.0584 (11)0.0571 (11)0.0200 (9)0.0087 (8)0.0123 (9)
C60.0412 (9)0.0480 (10)0.0473 (10)0.0143 (8)0.0020 (7)0.0051 (8)
C70.0374 (8)0.0422 (9)0.0328 (8)0.0095 (7)0.0055 (6)0.0050 (6)
C80.0522 (10)0.0408 (9)0.0344 (8)0.0100 (8)0.0084 (7)0.0046 (7)
C90.0737 (14)0.0435 (10)0.0498 (11)0.0012 (10)0.0025 (10)0.0043 (8)
C100.0565 (13)0.0683 (14)0.0624 (13)−0.0109 (11)−0.0078 (10)0.0199 (11)
C110.0368 (10)0.0928 (18)0.0765 (15)0.0099 (11)0.0044 (10)0.0380 (13)
C120.0426 (10)0.0627 (12)0.0579 (11)0.0201 (9)0.0117 (8)0.0176 (9)
C130.0440 (11)0.0873 (16)0.0544 (12)0.0194 (11)−0.0049 (9)−0.0059 (11)
C140.0683 (14)0.0747 (15)0.0644 (13)0.0333 (12)0.0219 (11)0.0065 (11)
C150.0692 (13)0.0461 (11)0.0683 (13)0.0261 (10)0.0246 (11)0.0074 (9)
N10.0391 (8)0.0405 (8)0.0409 (8)0.0117 (6)0.0020 (6)0.0006 (6)
O10.0516 (7)0.0371 (6)0.0622 (8)0.0085 (6)0.0031 (6)−0.0050 (6)
O20.0499 (7)0.0472 (7)0.0660 (8)0.0246 (6)0.0075 (6)0.0078 (6)
S10.0399 (2)0.0329 (2)0.0477 (3)0.01217 (17)0.00452 (18)0.00091 (17)

Geometric parameters (Å, °)

C1—C61.394 (2)C10—C111.375 (4)
C1—C21.396 (2)C10—H100.93
C1—S11.7799 (17)C11—C121.384 (3)
C2—C31.394 (3)C11—H110.93
C2—C131.510 (2)C12—H120.93
C3—C41.385 (3)C13—H13A0.96
C3—H30.93C13—H13B0.96
C4—C51.381 (3)C13—H13C0.96
C4—C141.513 (3)C14—H14A0.96
C5—C61.380 (3)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—H60.93C15—H15A0.96
C7—C121.386 (2)C15—H15B0.96
C7—C81.395 (2)C15—H15C0.96
C7—N11.436 (2)N1—S11.6350 (16)
C8—C91.393 (3)N1—H1N0.832 (15)
C8—C151.503 (3)O1—S11.4377 (13)
C9—C101.368 (3)O2—S11.4299 (13)
C9—H90.93
C6—C1—C2120.83 (16)C12—C11—H11120.1
C6—C1—S1115.77 (13)C11—C12—C7119.3 (2)
C2—C1—S1123.34 (13)C11—C12—H12120.3
C3—C2—C1116.59 (16)C7—C12—H12120.3
C3—C2—C13117.89 (17)C2—C13—H13A109.5
C1—C2—C13125.51 (17)C2—C13—H13B109.5
C4—C3—C2123.53 (18)H13A—C13—H13B109.5
C4—C3—H3118.2C2—C13—H13C109.5
C2—C3—H3118.2H13A—C13—H13C109.5
C5—C4—C3118.18 (17)H13B—C13—H13C109.5
C5—C4—C14121.52 (18)C4—C14—H14A109.5
C3—C4—C14120.30 (19)C4—C14—H14B109.5
C6—C5—C4120.45 (17)H14A—C14—H14B109.5
C6—C5—H5119.8C4—C14—H14C109.5
C4—C5—H5119.8H14A—C14—H14C109.5
C5—C6—C1120.42 (17)H14B—C14—H14C109.5
C5—C6—H6119.8C8—C15—H15A109.5
C1—C6—H6119.8C8—C15—H15B109.5
C12—C7—C8121.51 (17)H15A—C15—H15B109.5
C12—C7—N1117.73 (16)C8—C15—H15C109.5
C8—C7—N1120.71 (15)H15A—C15—H15C109.5
C9—C8—C7117.21 (18)H15B—C15—H15C109.5
C9—C8—C15120.60 (18)C7—N1—S1121.46 (11)
C7—C8—C15122.19 (16)C7—N1—H1N116.5 (14)
C10—C9—C8121.6 (2)S1—N1—H1N108.7 (15)
C10—C9—H9119.2O2—S1—O1118.89 (8)
C8—C9—H9119.2O2—S1—N1108.05 (8)
C9—C10—C11120.4 (2)O1—S1—N1104.94 (8)
C9—C10—H10119.8O2—S1—C1109.57 (8)
C11—C10—H10119.8O1—S1—C1107.40 (8)
C10—C11—C12119.9 (2)N1—S1—C1107.42 (8)
C10—C11—H11120.1
C6—C1—C2—C3−0.2 (3)C15—C8—C9—C10179.47 (19)
S1—C1—C2—C3176.86 (13)C8—C9—C10—C110.9 (3)
C6—C1—C2—C13−179.88 (19)C9—C10—C11—C120.8 (4)
S1—C1—C2—C13−2.8 (3)C10—C11—C12—C7−1.8 (3)
C1—C2—C3—C40.4 (3)C8—C7—C12—C111.2 (3)
C13—C2—C3—C4−179.95 (19)N1—C7—C12—C11178.85 (17)
C2—C3—C4—C5−0.3 (3)C12—C7—N1—S175.97 (18)
C2—C3—C4—C14−179.61 (19)C8—C7—N1—S1−106.39 (17)
C3—C4—C5—C60.0 (3)C7—N1—S1—O2−46.56 (15)
C14—C4—C5—C6179.35 (18)C7—N1—S1—O1−174.35 (12)
C4—C5—C6—C10.1 (3)C7—N1—S1—C171.57 (14)
C2—C1—C6—C50.0 (3)C6—C1—S1—O2−152.26 (13)
S1—C1—C6—C5−177.30 (14)C2—C1—S1—O230.51 (17)
C12—C7—C8—C90.3 (3)C6—C1—S1—O1−21.81 (16)
N1—C7—C8—C9−177.20 (15)C2—C1—S1—O1160.95 (14)
C12—C7—C8—C15179.46 (17)C6—C1—S1—N190.60 (14)
N1—C7—C8—C151.9 (3)C2—C1—S1—N1−86.63 (16)
C7—C8—C9—C10−1.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.19 (2)3.002 (2)165 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2971).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o800. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography