PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1539.
Published online 2009 November 7. doi:  10.1107/S1600536809046121
PMCID: PMC2972016

[4-(2-Amino­ethyl)piperazin-1-ium]trichloridocopper(II) monohydrate

Abstract

In the title compound, [CuCl3(C6H16N3)]·H2O, the copper(II) ion is five-coordinated by two N atoms from the bidentate 4-(2-amino­ethyl)piperazin-1-ium cation and three chloride ions in a distorted square-pyramidal environment. Inter­molecular N—H(...)Cl and O—H(...)Cl hydrogen bonds build up an intricate three-dimensional network.

Related literature

For background information on polydentate ligands with nitro­gen donor atoms, see: Riggio et al. (2001 [triangle]); Xiang et al. (2007 [triangle]); Gokhale et al. (2001 [triangle]). The copper(II) ion, owing to the ’plasticity’ of the coordination sphere, forms complexes of coordination number 4–6, with a variety of irregular geometries, see: Fujisawa et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1539-scheme1.jpg

Experimental

Crystal data

  • [CuCl3(C6H16N3)]·H2O
  • M r = 318.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1539-efi1.jpg
  • a = 9.0540 (6) Å
  • b = 14.8840 (13) Å
  • c = 9.1040 (2) Å
  • β = 94.019 (5)°
  • V = 1223.84 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.41 mm−1
  • T = 293 K
  • 0.35 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker et al., 1998 [triangle]) T min = 0.541, T max = 0.685
  • 21677 measured reflections
  • 4410 independent reflections
  • 3444 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.102
  • S = 1.19
  • 4410 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046121/dn2503sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046121/dn2503Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Polydentate ligands with nitrogen donor atoms are largely employed in mimicking the environnement of the copper in models of biological interest, whose coordination environment is provided by nitrogen atoms of the ligand, plus one or more exogeneous ligands (Riggio et al., 2001; Xiang et al., 2007; Gokhale et al., 2001). It is of current interest to correlate the flexibility of the model ligand and its sterical hindrance with the geometry of the complex. The copper(II) ion, owing to the well known 'plasticity' of the coordination sphere, forms complexes of co-ordination number 4–6, with a variety of irregular geometries (Fujisawa et al., 2008), both the anions and the solvent playing often a vital role on the stoichiometry and stereochemistry of the complexes (Xiang et al., 2007). In this paper, we report on the synthesis and the crystal structure determinationof N2 bidentate copper(II) complex 1-(2-ammoniumethyl) piperazinium trichlorocuprate(II)monohydrate (Scheme).

The structure of the title compound consists of discrete copper(II) neutral complexes with the metal atom five-coordinated to two N atoms from the bidentate 1-(2-aminoethyl) piperazine and three chlorine atoms in a square pyramidal environment (Fig. 1). The square plane is defined by two N atoms from organic cation and the more strongly bonded Cl1 and Cl2 chlorine, the apical position is occupied by the Cl3 chlorine atom. The Cu—Cl3 distance 2.6095 (8)Å is significantly longer than the normal bond length, which reflects the weak axial interactions as expected for Jahn-Teller distorted copper (II) complexes. The value of structural parameter τ is 0.17, showing a distorted square pyramidal structure, where τ is defined as τ = (α-β)/60°, where α and β are the largest angles (α> β) around a five coordinated metal center (τ is equal to 0 for an ideal square pyramidal geometry).

The intermolecular hydrogen bonds, N—H···Cl and O—H···Cl, build up an intricated three dimensionnal network (Table 1, Fig. 2).

Experimental

To a solution of 1-(2-aminoethyl) piperazine compound (10 mmol) in chlorhydric acid (35 ml) was added a solution of CuCl2.2H2O(10 mmol) in acetone (15 ml). After a few days to 3 weeks, the product separates as crystals, which were isolated by filtration and dried in air. The new compound show satisfactory elemental analyses.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stages of refinement, they were treated as riding on the O atom.

Figures

Fig. 1.
Molecular view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probabilit level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line.
Fig. 2.
Partial packing view showing the intricated N—H···Cl and O—H···Cl network. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry ...

Crystal data

[CuCl3(C6H16N3)]·H2OF(000) = 652
Mr = 318.13Dx = 1.727 Mg m3
Monoclinic, P21/nMelting point: 455 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.0540 (6) ÅCell parameters from 4604 reflections
b = 14.8840 (13) Åθ = 3.1–33.0°
c = 9.1040 (2) ŵ = 2.41 mm1
β = 94.019 (5)°T = 293 K
V = 1223.84 (14) Å3Prism, colourless
Z = 40.35 × 0.21 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer4410 independent reflections
Radiation source: fine-focus sealed tube3444 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 33.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −13→13
Tmin = 0.541, Tmax = 0.685k = −20→22
21677 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.19w = 1/[σ2(Fo2) + (0.0308P)2 + 1.5885P] where P = (Fo2 + 2Fc2)/3
4410 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.52502 (3)0.275723 (19)0.26008 (3)0.02535 (8)
Cl10.69453 (8)0.34628 (4)0.12625 (7)0.03484 (14)
Cl20.35774 (8)0.39523 (4)0.23087 (8)0.03722 (15)
Cl30.60236 (8)0.32232 (5)0.53095 (8)0.04205 (17)
N10.3558 (2)0.19697 (14)0.3082 (2)0.0301 (4)
H1A0.32370.21390.39540.036*
H1B0.28070.20440.23910.036*
N20.6475 (2)0.15459 (12)0.2700 (2)0.0238 (4)
N30.8947 (3)0.04353 (15)0.1831 (3)0.0373 (5)
H3A0.9412−0.00990.18660.045*
H3B0.94650.08100.12850.045*
C10.3973 (3)0.10108 (17)0.3155 (3)0.0339 (5)
H110.37870.07340.21960.041*
H120.33890.06990.38500.041*
C20.5603 (3)0.09485 (16)0.3645 (3)0.0305 (5)
H210.57580.11310.46670.037*
H220.59360.03320.35650.037*
C30.8026 (3)0.16627 (16)0.3349 (3)0.0308 (5)
H310.79980.18780.43520.037*
H320.85150.21170.27920.037*
C40.8927 (3)0.08025 (18)0.3355 (3)0.0353 (6)
H410.99320.09230.37440.042*
H420.85000.03620.39870.042*
C50.7427 (3)0.03183 (17)0.1101 (3)0.0344 (6)
H510.6915−0.01570.15890.041*
H520.74970.01470.00810.041*
C60.6557 (3)0.11889 (17)0.1175 (3)0.0297 (5)
H610.70120.16390.05830.036*
H620.55590.10890.07480.036*
O1W0.0185 (4)0.3850 (3)0.2878 (5)0.0994 (12)
H10.11930.37670.26060.149*
H2−0.05400.34970.22950.149*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02915 (15)0.02000 (13)0.02711 (15)0.00087 (10)0.00348 (10)0.00021 (10)
Cl10.0433 (4)0.0240 (3)0.0390 (3)0.0025 (2)0.0153 (3)0.0055 (2)
Cl20.0342 (3)0.0270 (3)0.0499 (4)0.0043 (2)−0.0007 (3)−0.0008 (3)
Cl30.0426 (4)0.0499 (4)0.0325 (3)0.0124 (3)−0.0058 (3)−0.0154 (3)
N10.0291 (10)0.0298 (10)0.0315 (10)−0.0012 (8)0.0021 (8)0.0019 (8)
N20.0308 (10)0.0188 (8)0.0220 (8)0.0011 (7)0.0029 (7)0.0017 (6)
N30.0422 (13)0.0230 (9)0.0489 (14)0.0071 (9)0.0190 (11)0.0034 (9)
C10.0362 (13)0.0263 (11)0.0402 (14)−0.0064 (10)0.0097 (11)0.0001 (10)
C20.0397 (14)0.0253 (10)0.0271 (11)0.0018 (9)0.0071 (10)0.0056 (9)
C30.0340 (13)0.0228 (10)0.0352 (13)0.0000 (9)−0.0007 (10)−0.0031 (9)
C40.0335 (13)0.0278 (11)0.0440 (15)0.0056 (10)−0.0023 (11)0.0010 (10)
C50.0496 (16)0.0239 (11)0.0311 (12)−0.0004 (10)0.0128 (11)−0.0036 (9)
C60.0418 (14)0.0271 (11)0.0204 (10)0.0006 (10)0.0035 (9)−0.0004 (8)
O1W0.072 (2)0.120 (3)0.105 (3)−0.002 (2)0.002 (2)−0.018 (2)

Geometric parameters (Å, °)

Cu1—N12.002 (2)C1—H110.9700
Cu1—N22.1153 (19)C1—H120.9700
Cu1—Cl12.2814 (7)C2—H210.9700
Cu1—Cl22.3392 (7)C2—H220.9700
Cu1—Cl32.6097 (7)C3—C41.518 (4)
N1—C11.476 (3)C3—H310.9700
N1—H1A0.9000C3—H320.9700
N1—H1B0.9000C4—H410.9700
N2—C61.493 (3)C4—H420.9700
N2—C31.495 (3)C5—C61.520 (4)
N2—C21.500 (3)C5—H510.9700
N3—C41.493 (4)C5—H520.9700
N3—C51.496 (4)C6—H610.9700
N3—H3A0.9000C6—H620.9700
N3—H3B0.9000O1W—H10.9701
C1—C21.514 (4)O1W—H20.9694
N1—Cu1—N284.19 (8)H11—C1—H12108.4
N1—Cu1—Cl1160.09 (7)N2—C2—C1109.6 (2)
N2—Cu1—Cl192.56 (6)N2—C2—H21109.7
N1—Cu1—Cl288.32 (7)C1—C2—H21109.7
N2—Cu1—Cl2170.50 (6)N2—C2—H22109.7
Cl1—Cu1—Cl292.50 (3)C1—C2—H22109.7
N1—Cu1—Cl396.18 (7)H21—C2—H22108.2
N2—Cu1—Cl394.65 (6)N2—C3—C4113.1 (2)
Cl1—Cu1—Cl3103.67 (3)N2—C3—H31109.0
Cl2—Cu1—Cl391.95 (3)C4—C3—H31109.0
C1—N1—Cu1112.31 (16)N2—C3—H32109.0
C1—N1—H1A109.1C4—C3—H32109.0
Cu1—N1—H1A109.1H31—C3—H32107.8
C1—N1—H1B109.1N3—C4—C3110.3 (2)
Cu1—N1—H1B109.1N3—C4—H41109.6
H1A—N1—H1B107.9C3—C4—H41109.6
C6—N2—C3107.62 (19)N3—C4—H42109.6
C6—N2—C2112.64 (19)C3—C4—H42109.6
C3—N2—C2111.08 (19)H41—C4—H42108.1
C6—N2—Cu1108.90 (14)N3—C5—C6110.1 (2)
C3—N2—Cu1113.13 (14)N3—C5—H51109.6
C2—N2—Cu1103.53 (14)C6—C5—H51109.6
C4—N3—C5112.6 (2)N3—C5—H52109.6
C4—N3—H3A109.1C6—C5—H52109.6
C5—N3—H3A109.1H51—C5—H52108.1
C4—N3—H3B109.1N2—C6—C5113.8 (2)
C5—N3—H3B109.1N2—C6—H61108.8
H3A—N3—H3B107.8C5—C6—H61108.8
N1—C1—C2108.2 (2)N2—C6—H62108.8
N1—C1—H11110.1C5—C6—H62108.8
C2—C1—H11110.1H61—C6—H62107.7
N1—C1—H12110.1H1—O1W—H2113.8
C2—C1—H12110.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1···Cl20.972.213.154 (4)164
O1W—H2···Cl1i0.972.403.239 (4)144
N1—H1A···Cl1ii0.902.633.395 (2)143
N1—H1B···Cl3iii0.902.433.302 (2)162
N3—H3A···Cl2iv0.902.383.204 (2)152
N3—H3B···Cl3v0.902.243.131 (2)169

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2503).

References

  • Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Fujisawa, K., Kanda, R., Miyashita, Y. & Okamoto, K. (2008). Polyhedron, 27, 1432–1446.
  • Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001). Inorg. Chim. Acta, 319, 90–94.
  • Riggio, I., Van Albada, G. A., Ellis, D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659–2666.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiang, J., Yin, Y., Mei, P. & Li, Q. (2007). Inorg. Chem. Commun. 10, 610–613.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography