PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o2972.
Published online 2009 November 4. doi:  10.1107/S1600536809045115
PMCID: PMC2972013

1-{2-[(2,4-Dichloro­benzyl­idene)amino]eth­yl}-3-methyl­imidazolium hexa­fluoro­phosphate

Abstract

In the title Schiff base compound, C13H14Cl2N3 +·PF6 , the dihedral angle between the aromatic ring and imidazole ring in the cation is 6.10 (2)°. Inter­molecular C—H(...)F hydrogen-bonding inter­actions and π–π stacking inter­actions [centoid–centroid distance = 3.7203 (12) Å] help stabilize the crystal packing.

Related literature

For bound-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Pradeep (2005 [triangle]); Li et al. (2009 [triangle]). For ionic liquids and their applications, see: Wasserscheid & Keim (2000 [triangle]); Singh & Sekhon (2005 [triangle]); Noda & Watanabe (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2972-scheme1.jpg

Experimental

Crystal data

  • C13H14Cl2N3 +·PF6
  • M r = 428.14
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2972-efi1.jpg
  • a = 8.3465 (13) Å
  • b = 10.1419 (16) Å
  • c = 11.0310 (17) Å
  • α = 78.899 (2)°
  • β = 76.523 (2)°
  • γ = 67.834 (2)°
  • V = 835.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.55 mm−1
  • T = 173 K
  • 0.32 × 0.24 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.844, T max = 0.894
  • 3566 measured reflections
  • 3566 independent reflections
  • 3151 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.093
  • S = 1.10
  • 3566 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045115/jj2012sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045115/jj2012Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 20672046) and the Guangdong Natural Science Foundation (No. 8151063201000016) for financial support.

supplementary crystallographic information

Comment

Ionic liquids are attracting much interest in many fields of chemistry and industry, due to their potential as green solvents for a wide range of applications in synthesis, catalysis, electrochemistry, and liquid-liquid extractions (Wasserscheid et al., 2000; Singh, 2005; Noda, 2000). Schiff base compounds are one of most prevalent mixed-donor ligands in the field of coordination chemistry (Li et al., 2009). As part of our program aimed at developing a novel functionalized ionic liquid, we now report the crystal structure of a novel ionic liquid-supported Schiff base (I).

The asymmetric unit of the title compond, (I), a Schiff base derived ionic liquid, is comprised of an organic cation and a PF6 counter anion, Fig. 1. Bond lengths and angels are generally within normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the imidazole and benzene rings in the cation is 6.10°. The crystal structure exhibits weak C–H···Cl intramolecular and C–H···F intermolecular hydrogen bonding interactions as well as aromatic π–π stacking interactions between the imidazole and benzene rings of neighbouring cations [Cg1···Cg2 = 3.7203 (12)Å; 1-x, 1-y, 1-z, where Cg1 and Cg2 are centroids of the imidazole (N1/C10/N2/C11/C12) and benzene (C1–C6) rings, respectively, Fig. 2].

Experimental

A mixture of the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate (4 mmol) and 2,4-dichlorobenzaldehyde (3 mmol) was stirred for 4 h at room temperature under solvent-free conditions. After completion ofthe reaction, ethanol (30 ml) was added to the reaction mixture, filtered off the solid product and washed with cold ethanol. The crude product was purified by recrystallization in ethanol/ethyl acetate(3:1 v/v). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the complex at room temperature.

Refinement

All H atoms were located in a difference Fourier maps and were refined as ridingatoms: C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of (I) viewed down the b axis. Weak C–H···Cl intramolecular and C–H···F intermolecular hydrogen bonding interactions are shown as dashed lines.

Crystal data

C13H14Cl2N3+·PF6Z = 2
Mr = 428.14F(000) = 432
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3465 (13) ÅCell parameters from 5376 reflections
b = 10.1419 (16) Åθ = 2.7–27.0°
c = 11.0310 (17) ŵ = 0.55 mm1
α = 78.899 (2)°T = 173 K
β = 76.523 (2)°Block, colorless
γ = 67.834 (2)°0.32 × 0.24 × 0.21 mm
V = 835.3 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3566 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
graphiteRint = 0.0000
[var phi] and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.844, Tmax = 0.894k = −12→12
3566 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.047P)2 + 0.3955P] where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3066 (2)0.34376 (17)0.75848 (15)0.0220 (3)
C20.3555 (2)0.30042 (17)0.87666 (15)0.0227 (3)
C30.4986 (2)0.17904 (17)0.90058 (15)0.0241 (3)
H30.52960.15130.98170.029*
C40.5944 (2)0.09983 (17)0.80205 (16)0.0240 (3)
C50.5499 (2)0.13684 (18)0.68374 (16)0.0270 (3)
H50.61670.07960.61800.032*
C60.4071 (2)0.25808 (18)0.66287 (15)0.0257 (3)
H60.37610.28410.58180.031*
C70.1562 (2)0.47512 (17)0.73301 (15)0.0237 (3)
H70.09010.53230.79890.028*
C8−0.0351 (2)0.64629 (18)0.61084 (16)0.0283 (4)
H8A−0.09110.68070.69390.034*
H8B−0.12350.62820.57650.034*
C90.0251 (2)0.76060 (18)0.52316 (16)0.0297 (4)
H9A−0.07390.85330.52470.036*
H9B0.12110.77190.55390.036*
C100.0061 (2)0.79621 (17)0.29722 (15)0.0244 (3)
H10−0.10030.87650.30200.029*
C110.2433 (2)0.62263 (18)0.22472 (17)0.0295 (4)
H110.33130.56090.16880.035*
C120.2369 (2)0.61583 (18)0.34869 (17)0.0285 (4)
H120.31970.54830.39680.034*
C130.0537 (3)0.7880 (2)0.06825 (17)0.0368 (4)
H13A−0.06310.86270.07410.055*
H13B0.05390.70810.03040.055*
H13C0.14100.82760.01610.055*
Cl10.23667 (6)0.39837 (5)1.00213 (4)0.03149 (12)
Cl20.78059 (6)−0.04833 (5)0.82692 (4)0.03387 (13)
F10.44475 (17)0.19348 (17)0.31806 (17)0.0655 (4)
F20.58081 (16)0.32801 (12)0.36186 (12)0.0436 (3)
F30.70635 (18)0.08681 (13)0.38373 (11)0.0492 (3)
F40.82315 (14)0.21845 (14)0.22679 (11)0.0412 (3)
F50.68843 (16)0.08228 (12)0.18313 (11)0.0423 (3)
F60.56548 (19)0.32368 (14)0.15939 (13)0.0555 (4)
N10.08759 (18)0.72527 (14)0.39294 (13)0.0243 (3)
N20.09752 (19)0.73655 (15)0.19419 (13)0.0262 (3)
N30.11363 (19)0.51306 (15)0.62537 (13)0.0263 (3)
P10.63280 (5)0.20636 (5)0.27210 (4)0.02671 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0223 (7)0.0219 (8)0.0212 (7)−0.0075 (6)−0.0039 (6)−0.0016 (6)
C20.0239 (7)0.0235 (8)0.0204 (7)−0.0080 (6)−0.0019 (6)−0.0049 (6)
C30.0259 (8)0.0241 (8)0.0227 (8)−0.0088 (6)−0.0070 (6)−0.0002 (6)
C40.0216 (7)0.0178 (7)0.0298 (8)−0.0042 (6)−0.0047 (6)−0.0016 (6)
C50.0284 (8)0.0242 (8)0.0259 (8)−0.0062 (7)−0.0016 (6)−0.0070 (6)
C60.0280 (8)0.0272 (8)0.0204 (7)−0.0075 (7)−0.0048 (6)−0.0027 (6)
C70.0235 (8)0.0223 (8)0.0233 (8)−0.0057 (6)−0.0038 (6)−0.0031 (6)
C80.0278 (8)0.0279 (9)0.0233 (8)−0.0011 (7)−0.0079 (6)−0.0032 (6)
C90.0379 (9)0.0236 (8)0.0257 (8)−0.0038 (7)−0.0120 (7)−0.0050 (6)
C100.0256 (8)0.0197 (7)0.0260 (8)−0.0053 (6)−0.0062 (6)−0.0019 (6)
C110.0259 (8)0.0229 (8)0.0361 (9)−0.0073 (7)0.0005 (7)−0.0053 (7)
C120.0217 (8)0.0223 (8)0.0373 (9)−0.0034 (6)−0.0060 (7)−0.0013 (7)
C130.0491 (11)0.0397 (10)0.0220 (8)−0.0165 (9)−0.0065 (8)−0.0017 (7)
Cl10.0345 (2)0.0313 (2)0.0223 (2)−0.00086 (17)−0.00639 (16)−0.00879 (16)
Cl20.0295 (2)0.0252 (2)0.0392 (2)0.00147 (16)−0.00988 (17)−0.00417 (17)
F10.0325 (7)0.0723 (10)0.0967 (12)−0.0247 (7)0.0080 (7)−0.0315 (9)
F20.0411 (6)0.0347 (6)0.0488 (7)−0.0033 (5)−0.0004 (5)−0.0202 (5)
F30.0676 (9)0.0348 (6)0.0269 (6)−0.0002 (6)−0.0056 (5)−0.0010 (5)
F40.0279 (6)0.0566 (7)0.0404 (6)−0.0150 (5)0.0001 (5)−0.0158 (5)
F50.0519 (7)0.0373 (6)0.0390 (6)−0.0120 (5)−0.0087 (5)−0.0140 (5)
F60.0626 (9)0.0399 (7)0.0548 (8)0.0017 (6)−0.0332 (7)0.0033 (6)
N10.0253 (7)0.0194 (6)0.0269 (7)−0.0046 (5)−0.0080 (5)−0.0027 (5)
N20.0282 (7)0.0245 (7)0.0249 (7)−0.0092 (6)−0.0028 (5)−0.0028 (5)
N30.0277 (7)0.0235 (7)0.0244 (7)−0.0038 (6)−0.0072 (5)−0.0024 (5)
P10.0213 (2)0.0254 (2)0.0292 (2)−0.00174 (17)−0.00511 (16)−0.00594 (17)

Geometric parameters (Å, °)

C1—C21.397 (2)C9—H9B0.9900
C1—C61.401 (2)C10—N21.324 (2)
C1—C71.479 (2)C10—N11.330 (2)
C2—C31.387 (2)C10—H100.9500
C2—Cl11.7414 (16)C11—C121.345 (3)
C3—C41.383 (2)C11—N21.382 (2)
C3—H30.9500C11—H110.9500
C4—C51.383 (2)C12—N11.380 (2)
C4—Cl21.7394 (16)C12—H120.9500
C5—C61.378 (2)C13—N21.466 (2)
C5—H50.9500C13—H13A0.9800
C6—H60.9500C13—H13B0.9800
C7—N31.266 (2)C13—H13C0.9800
C7—H70.9500F1—P11.5798 (13)
C8—N31.462 (2)F2—P11.5991 (12)
C8—C91.521 (3)F3—P11.6059 (12)
C8—H8A0.9900F4—P11.5945 (12)
C8—H8B0.9900F5—P11.6077 (12)
C9—N11.474 (2)F6—P11.5903 (13)
C9—H9A0.9900
C2—C1—C6117.32 (15)N1—C10—H10125.6
C2—C1—C7122.19 (14)C12—C11—N2106.95 (15)
C6—C1—C7120.49 (14)C12—C11—H11126.5
C3—C2—C1122.51 (15)N2—C11—H11126.5
C3—C2—Cl1116.75 (12)C11—C12—N1107.24 (15)
C1—C2—Cl1120.74 (12)C11—C12—H12126.4
C4—C3—C2117.56 (15)N1—C12—H12126.4
C4—C3—H3121.2N2—C13—H13A109.5
C2—C3—H3121.2N2—C13—H13B109.5
C3—C4—C5122.21 (15)H13A—C13—H13B109.5
C3—C4—Cl2118.75 (13)N2—C13—H13C109.5
C5—C4—Cl2119.02 (13)H13A—C13—H13C109.5
C6—C5—C4118.87 (15)H13B—C13—H13C109.5
C6—C5—H5120.6C10—N1—C12108.39 (14)
C4—C5—H5120.6C10—N1—C9124.53 (14)
C5—C6—C1121.51 (15)C12—N1—C9127.08 (14)
C5—C6—H6119.2C10—N2—C11108.67 (14)
C1—C6—H6119.2C10—N2—C13125.07 (15)
N3—C7—C1121.45 (15)C11—N2—C13126.20 (15)
N3—C7—H7119.3C7—N3—C8116.53 (14)
C1—C7—H7119.3F1—P1—F691.02 (9)
N3—C8—C9110.67 (14)F1—P1—F4179.50 (9)
N3—C8—H8A109.5F6—P1—F489.48 (8)
C9—C8—H8A109.5F1—P1—F290.12 (7)
N3—C8—H8B109.5F6—P1—F291.08 (7)
C9—C8—H8B109.5F4—P1—F289.81 (6)
H8A—C8—H8B108.1F1—P1—F390.46 (9)
N1—C9—C8112.47 (14)F6—P1—F3178.38 (8)
N1—C9—H9A109.1F4—P1—F389.04 (7)
C8—C9—H9A109.1F2—P1—F389.56 (7)
N1—C9—H9B109.1F1—P1—F590.54 (7)
C8—C9—H9B109.1F6—P1—F589.83 (7)
H9A—C9—H9B107.8F4—P1—F589.52 (6)
N2—C10—N1108.75 (14)F2—P1—F5178.86 (7)
N2—C10—H10125.6F3—P1—F589.51 (7)
C6—C1—C2—C30.9 (2)N3—C8—C9—N167.10 (18)
C7—C1—C2—C3−178.59 (15)N2—C11—C12—N10.05 (19)
C6—C1—C2—Cl1−179.03 (12)N2—C10—N1—C12−0.11 (18)
C7—C1—C2—Cl11.5 (2)N2—C10—N1—C9179.91 (15)
C1—C2—C3—C40.0 (2)C11—C12—N1—C100.03 (19)
Cl1—C2—C3—C4179.95 (12)C11—C12—N1—C9−179.99 (16)
C2—C3—C4—C5−1.1 (2)C8—C9—N1—C10111.90 (18)
C2—C3—C4—Cl2177.09 (12)C8—C9—N1—C12−68.1 (2)
C3—C4—C5—C61.1 (3)N1—C10—N2—C110.14 (18)
Cl2—C4—C5—C6−177.02 (13)N1—C10—N2—C13−177.43 (15)
C4—C5—C6—C1−0.1 (3)C12—C11—N2—C10−0.12 (19)
C2—C1—C6—C5−0.8 (2)C12—C11—N2—C13177.41 (16)
C7—C1—C6—C5178.67 (15)C1—C7—N3—C8−178.82 (14)
C2—C1—C7—N3179.95 (16)C9—C8—N3—C7113.18 (17)
C6—C1—C7—N30.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.952.693.0846 (17)106
C12—H12···F20.952.483.239 (2)137
C5—H5···F30.952.513.324 (2)143
C11—H11···F60.952.463.275 (2)143
C10—H10···F3i0.952.333.203 (2)152
C10—H10···F5i0.952.543.373 (2)147
C13—H13C···F5ii0.982.543.464 (2)158

Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2012).

References

  • Allen, F. H., Hennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J Chem Soc Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, B., Li, Y.-Q., Liu, J. & Zheng, W.-J. (2009). Acta Cryst. E65, o1427. [PMC free article] [PubMed]
  • Noda, A. & Watanabe, M. (2000). Electrochim. Acta, 45, 1265–1270.
  • Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, B. & Sekhon, S. S. (2005). Chem. Phys. Lett. 414, 34–39.
  • Wasserscheid, P. & Keim, W. (2000). Angew Chem. Int. Ed. 39, 3772–3789. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography