PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1505.
Published online 2009 November 4. doi:  10.1107/S1600536809045292
PMCID: PMC2972012

Aqua­{N-[1-(2-oxidophen­yl)ethyl­idene]-l-serinato}copper(II) monohydrate

Abstract

In the title compound, [Cu(C11H11NO4)(H2O)]·H2O, each CuII ion is four-coordinated by one N and two O atoms from the tridentate Schiff base ligand, and by one O atom from the coordinated water mol­ecule in a distorted square-planar geometry. Inter­molecular O—H(...)O hydrogen bonds link complex mol­ecules and solvent water mol­ecules into flattened columns propagated in [100].

Related literature

For general background to the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formyl­pyridine or their analogues, and α-amino acids, see: Casella & Guillotti (1983 [triangle]); Vigato & Tamburini (2004 [triangle]); Ganguly et al. (2008 [triangle]). For related structures, see: Usman et al. (2003 [triangle]); Parekh et al. (2006 [triangle]); Basu Baul et al. (2007 [triangle]). For details of the synthesis, see: Plesch et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1505-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H11NO4)(H2O)]·H2O
  • M r = 320.78
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1505-efi1.jpg
  • a = 5.6701 (9) Å
  • b = 13.788 (2) Å
  • c = 15.536 (2) Å
  • V = 1214.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.82 mm−1
  • T = 296 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.659, T max = 0.712
  • 6314 measured reflections
  • 2149 independent reflections
  • 2038 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.053
  • S = 1.09
  • 2149 reflections
  • 176 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 869 Friedel pairs
  • Flack parameter: 0.011 (13)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045292/cv2643sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045292/cv2643Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Sciences Foundation of China (grant No. 20877036) and High-Level Personnel Foundation of Pingdingshan University (grant No. 2009001).

supplementary crystallographic information

Comment

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-Hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title compound (I).

The asymmetric unit of (I) contains a monomeric square-planar coordinated CuII complex and one solvate water molecule (Fig. 1). The Cu—N bond length is 1.9335 (19) Å, while Cu—O bond lengths lie in the range 1.8595 (18)-1.9677 (18) Å.

The crystal structure is stabilized by O—H···O type hydrogen bonds (Table 1), which link complex molecules and solvent water molecules into flattened columns propagated in direction [100].

Experimental

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-serine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-Hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper (II) acetate monohydrate (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark green solution was filtered and left for several days, dark green crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement

All H atoms were positioned geometrically (C—H = 0.93-0.97 Å, O—H = 0.82-0.85 Å) and refined as riding, with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Figures

Fig. 1.
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Cu(C11H11NO4)(H2O)]·H2OF(000) = 660
Mr = 320.78Dx = 1.754 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3823 reflections
a = 5.6701 (9) Åθ = 2.6–27.3°
b = 13.788 (2) ŵ = 1.82 mm1
c = 15.536 (2) ÅT = 296 K
V = 1214.6 (3) Å3Block, dark green
Z = 40.25 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEXII CCD diffractometer2149 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −2→6
Tmin = 0.659, Tmax = 0.712k = −16→16
6314 measured reflectionsl = −18→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022w = 1/[σ2(Fo2) + (0.0174P)2 + 0.2008P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.21 e Å3
2149 reflectionsΔρmin = −0.24 e Å3
176 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0120 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 869 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.011 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.18718 (6)0.09862 (2)0.532935 (19)0.02947 (11)
C10.5839 (5)−0.02296 (17)0.50130 (16)0.0286 (6)
C20.7793 (5)−0.04620 (19)0.44924 (16)0.0378 (7)
H20.8084−0.00920.40030.045*
C30.9287 (5)−0.12205 (18)0.46860 (19)0.0390 (6)
H31.0554−0.13600.43260.047*
C40.8899 (5)−0.17732 (19)0.54164 (19)0.0382 (7)
H40.9903−0.22840.55530.046*
C50.7019 (6)−0.15591 (18)0.59347 (16)0.0340 (6)
H50.6780−0.19330.64250.041*
C60.5428 (5)−0.07988 (16)0.57613 (15)0.0268 (6)
C70.3496 (5)−0.06175 (17)0.63784 (15)0.0283 (6)
C80.0332 (5)0.03559 (19)0.69616 (16)0.0304 (6)
H8−0.0484−0.02380.71390.036*
C9−0.1447 (4)0.10765 (19)0.66029 (18)0.0354 (6)
C100.3232 (7)−0.1327 (2)0.71079 (18)0.0469 (8)
H10A0.4539−0.12600.74960.070*
H10B0.3200−0.19760.68830.070*
H10C0.1788−0.11990.74100.070*
C110.1466 (5)0.0833 (2)0.77456 (16)0.0393 (7)
H11A0.02810.09310.81870.047*
H11B0.26710.04080.79780.047*
N10.2116 (4)0.01209 (14)0.63046 (12)0.0247 (4)
O10.4525 (3)0.05113 (12)0.47659 (11)0.0372 (4)
O2−0.0953 (4)0.14741 (13)0.58792 (13)0.0409 (5)
O3−0.3178 (4)0.12658 (15)0.70381 (15)0.0552 (6)
O40.2492 (3)0.17369 (14)0.75275 (13)0.0412 (5)
H4A0.38690.16540.73830.062*
O1W0.1373 (4)0.18950 (14)0.43700 (13)0.0523 (6)
H1WA−0.00260.18970.42360.078*
H1WB0.19230.24660.43180.078*
O2W0.2141 (4)0.33399 (16)0.63903 (14)0.0550 (6)
H2WA0.20360.27760.66070.066*
H2WB0.10450.35690.60770.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02747 (17)0.02884 (16)0.03211 (16)0.00077 (15)−0.00322 (15)0.00440 (13)
C10.0274 (14)0.0282 (12)0.0303 (12)−0.0033 (11)−0.0041 (12)−0.0019 (11)
C20.0400 (17)0.0408 (15)0.0324 (14)−0.0022 (13)0.0062 (13)−0.0010 (11)
C30.0339 (15)0.0387 (15)0.0446 (15)0.0005 (12)0.0076 (15)−0.0103 (13)
C40.0327 (15)0.0318 (13)0.0500 (17)0.0059 (12)−0.0027 (14)−0.0036 (14)
C50.0379 (15)0.0273 (12)0.0368 (14)0.0001 (14)−0.0022 (15)−0.0017 (11)
C60.0254 (13)0.0248 (13)0.0302 (12)−0.0027 (11)−0.0013 (11)−0.0041 (10)
C70.0267 (15)0.0286 (12)0.0296 (12)−0.0029 (11)−0.0028 (12)0.0015 (10)
C80.0228 (14)0.0329 (13)0.0354 (14)−0.0055 (12)0.0067 (12)0.0012 (11)
C90.0238 (15)0.0309 (13)0.0517 (16)−0.0047 (13)−0.0008 (13)−0.0103 (14)
C100.0446 (19)0.0500 (16)0.0459 (16)0.0087 (16)0.0081 (17)0.0212 (13)
C110.0340 (17)0.0547 (17)0.0291 (12)−0.0025 (14)0.0084 (12)−0.0040 (13)
N10.0224 (11)0.0263 (10)0.0254 (10)−0.0043 (10)−0.0002 (10)−0.0010 (8)
O10.0353 (10)0.0426 (10)0.0336 (10)0.0061 (9)0.0052 (9)0.0097 (8)
O20.0347 (11)0.0372 (10)0.0509 (12)0.0099 (9)−0.0037 (10)0.0023 (9)
O30.0287 (12)0.0614 (14)0.0754 (15)0.0059 (11)0.0118 (13)−0.0107 (11)
O40.0291 (13)0.0436 (10)0.0508 (12)−0.0034 (8)0.0022 (9)−0.0159 (9)
O1W0.0461 (15)0.0468 (12)0.0639 (13)−0.0085 (10)−0.0166 (11)0.0273 (11)
O2W0.0374 (12)0.0585 (13)0.0690 (14)−0.0080 (12)−0.0080 (12)0.0245 (11)

Geometric parameters (Å, °)

Cu1—O11.8595 (18)C8—N11.473 (3)
Cu1—N11.9335 (19)C8—C91.522 (4)
Cu1—O21.936 (2)C8—C111.527 (4)
Cu1—O1W1.9677 (18)C8—H80.9800
C1—O11.322 (3)C9—O31.220 (3)
C1—C21.408 (4)C9—O21.282 (3)
C1—C61.422 (3)C10—H10A0.9600
C2—C31.379 (4)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.385 (4)C11—O41.416 (3)
C3—H30.9300C11—H11A0.9700
C4—C51.368 (4)C11—H11B0.9700
C4—H40.9300O4—H4A0.8200
C5—C61.409 (4)O1W—H1WA0.8200
C5—H50.9300O1W—H1WB0.8502
C6—C71.477 (3)O2W—H2WA0.8500
C7—N11.289 (3)O2W—H2WB0.8500
C7—C101.505 (3)
O1—Cu1—N195.37 (8)C9—C8—C11106.9 (2)
O1—Cu1—O2177.99 (9)N1—C8—H8109.6
N1—Cu1—O285.87 (9)C9—C8—H8109.6
O1—Cu1—O1W89.08 (9)C11—C8—H8109.6
N1—Cu1—O1W175.46 (9)O3—C9—O2124.8 (3)
O2—Cu1—O1W89.66 (9)O3—C9—C8118.0 (3)
O1—C1—C2116.9 (2)O2—C9—C8117.1 (2)
O1—C1—C6124.9 (2)C7—C10—H10A109.5
C2—C1—C6118.2 (2)C7—C10—H10B109.5
C3—C2—C1122.0 (2)H10A—C10—H10B109.5
C3—C2—H2119.0C7—C10—H10C109.5
C1—C2—H2119.0H10A—C10—H10C109.5
C2—C3—C4119.9 (3)H10B—C10—H10C109.5
C2—C3—H3120.1O4—C11—C8111.2 (2)
C4—C3—H3120.1O4—C11—H11A109.4
C5—C4—C3119.2 (2)C8—C11—H11A109.4
C5—C4—H4120.4O4—C11—H11B109.4
C3—C4—H4120.4C8—C11—H11B109.4
C4—C5—C6123.1 (2)H11A—C11—H11B108.0
C4—C5—H5118.4C7—N1—C8121.9 (2)
C6—C5—H5118.4C7—N1—Cu1126.91 (17)
C5—C6—C1117.5 (2)C8—N1—Cu1110.98 (15)
C5—C6—C7118.5 (2)C1—O1—Cu1126.28 (16)
C1—C6—C7124.0 (2)C9—O2—Cu1114.80 (17)
N1—C7—C6121.7 (2)C11—O4—H4A109.5
N1—C7—C10121.3 (2)Cu1—O1W—H1WA109.5
C6—C7—C10116.9 (2)Cu1—O1W—H1WB127.5
N1—C8—C9110.2 (2)H1WA—O1W—H1WB109.1
N1—C8—C11111.0 (2)H2WA—O2W—H2WB121.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.842.651 (3)171
O1W—H1WA···O2Wii0.821.912.694 (3)161
O1W—H1WB···O2iii0.851.922.740 (3)162
O2W—H2WA···O40.852.042.837 (3)156
O2W—H2WB···O1ii0.852.022.817 (3)157

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2643).

References

  • Basu Baul, T. S., Masharing, C., Ruisi, G., Jir ásko, R., HolApek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.
  • Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259–2266.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.
  • Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.
  • Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  • Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography