PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1610.
Published online 2009 November 21. doi:  10.1107/S1600536809048594
PMCID: PMC2972011

{N,N-Dimethyl-N′-[phen­yl(2-pyrid­yl)methyl­ene]ethane-1,2-diamine-κ3 N,N′,N′′}dithio­cyanato-κNS-copper(II)

Abstract

In the title complex, [Cu(NCS)2(C16H19N3)], the CuII atom is coordinated by a total of four N atoms; three from one tridentate Schiff base ligand and one from one of the NCS ions. The S atom from the other NCS ion completes the distorted square-pyramidal coordination.

Related literature

For general background to Schiff base complexes, see: Shi et al. (2004 [triangle]); Chandra & Sangeetika (2004 [triangle]); Ramesh & Maheswaran (2003 [triangle]); Guo et al. (2009 [triangle]). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1610-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)2(C16H19N3)]
  • M r = 433.04
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1610-efi1.jpg
  • a = 7.6524 (13) Å
  • b = 9.2048 (15) Å
  • c = 27.931 (5) Å
  • V = 1967.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 294 K
  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.748, T max = 1.000
  • 11093 measured reflections
  • 3978 independent reflections
  • 3035 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.130
  • S = 1.07
  • 3978 reflections
  • 238 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048594/kj2135sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048594/kj2135Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the Science Foundation of Guangxi (No.07311052) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of MOE, China.

supplementary crystallographic information

Comment

Schiff base ligands have been extensively studied in coordination chemistry mainly due to their facile synthesis, easily tunable steric, electronic properties and good solubility in common solvents (Shi et al., 2004). Schiff bases have very wide applications as antibacterial, antiviral, antifungal agents (Chandra et al., 2004; Ramesh et al., 2003), and anticancer drugs (Guo et al., 2009). Herein, we report the CuII complex with the related Schiff base ligand N,N-dimethyl-N'-(α-(2-pyridyl)benzylidene)ethane-1,2-diamine. The molecular structure of the title compound is shown in Fig. 1. The coordination polyhedron could be determined by using the index τ = (β - α)/60, where β is the largest angle and α is the second. This index is unity for trigonal-bipyramidal geometry and zero for square-pyramidal geometry (Addison et al., 1984). The calculated value for the title compound 0.08, indicating a slightly distorted square pyramidal geometry for the copper atoms. The basal sites are occupied by four nitrogen atoms from one ligand and one NCS- ion with the Cu—N bond lengths ranging from 1.937 (4) to 2.071 (4) Å. In the apical position, another NCS- ion S coordinates to CuII atom with the Cu—S bond length of 2.679 (2) Å. All bond distances and bond angles have normal values.The dihedral angle between the benzene and pyridine rings is 69.22 (2)°.

Experimental

2-Benzoylpyridine (0.5 mmol) in 5 ml of methanol solution was added to 5 ml of methanol solution containing 0.5 mmol of N,N-dimethylethyldiamine. The solution was stirred for 4 h at 60 °C. Then, 0.5 mmol CuSO4.5H2O in 5 ml distilled water and 1 mmol NH4SCN solid was added. The mixture was stirred at 60 °C for 2 h and then cooled and filtered. The filtrate was allowed to slowly evaporate at room temperature. One month later, blue block crystal was obtained.

Refinement

The structure was refined as a racemic twin with twin ratio 0.56 (3) : 0.44. H atoms on C atoms were positoned geometrically and refined using a riding model (C—H = 0.93 Å for C-Haromatic, C—H = 0.97 Å for C-Hmethylene and C—H = 0.96 Å for C-Hmethyl). The displacement parameters of atom N2 were mildly restrained to isotropicity (standard uncertainty of 0.01 Å2).

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. All H atoms were omitted for clarity.

Crystal data

[Cu(NCS)2(C16H19N3)]Dx = 1.462 Mg m3
Mr = 433.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3480 reflections
a = 7.6524 (13) Åθ = 2.7–25.6°
b = 9.2048 (15) ŵ = 1.33 mm1
c = 27.931 (5) ÅT = 294 K
V = 1967.4 (6) Å3Block, blue
Z = 40.30 × 0.24 × 0.20 mm
F(000) = 892

Data collection

Bruker APEXII CCD area-detector diffractometer3978 independent reflections
Radiation source: fine-focus sealed tube3035 reflections with I > 2σ(I)
graphiteRint = 0.034
phi and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.748, Tmax = 1.000k = −11→9
11093 measured reflectionsl = −34→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0567P)2 + 2.0946P] where P = (Fo2 + 2Fc2)/3
3978 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.80 e Å3
6 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.26036 (8)0.95205 (6)0.07382 (2)0.04339 (19)
S1−0.0307 (2)0.9109 (2)−0.07293 (6)0.0670 (5)
S20.0488 (3)1.1662 (2)0.10308 (7)0.0735 (5)
N10.1524 (7)0.9185 (6)0.01206 (16)0.0609 (14)
N2−0.0282 (8)1.0836 (9)0.1945 (2)0.098 (2)
N30.1284 (5)0.7992 (5)0.11202 (15)0.0415 (10)
N40.4058 (5)0.9435 (5)0.13148 (14)0.0391 (9)
N50.4643 (6)1.0786 (5)0.04853 (14)0.0429 (10)
C10.0763 (7)0.9159 (6)−0.02339 (18)0.0422 (12)
C20.0070 (9)1.1144 (8)0.1584 (3)0.071 (2)
C3−0.0085 (7)0.7208 (7)0.0973 (2)0.0509 (14)
H3−0.06060.74160.06800.061*
C4−0.0730 (9)0.6097 (9)0.1250 (3)0.078 (2)
H4−0.16450.55270.11370.093*
C5−0.0016 (9)0.5823 (8)0.1698 (3)0.077 (2)
H5−0.04540.50800.18890.092*
C60.1341 (8)0.6666 (7)0.1854 (2)0.0561 (16)
H60.18210.65200.21560.067*
C70.1993 (6)0.7740 (6)0.15551 (17)0.0388 (12)
C80.3525 (7)0.8643 (6)0.16633 (16)0.0376 (11)
C90.4422 (7)0.8568 (6)0.21348 (18)0.0414 (12)
C100.6136 (9)0.8125 (9)0.2169 (3)0.075 (2)
H100.67370.78540.18940.090*
C110.6961 (10)0.8079 (9)0.2600 (3)0.083 (2)
H110.81030.77390.26180.100*
C120.6143 (10)0.8520 (9)0.2999 (2)0.072 (2)
H120.67270.85230.32910.086*
C130.4464 (12)0.8959 (10)0.2973 (2)0.094 (3)
H130.38890.92480.32500.113*
C140.3591 (10)0.8986 (9)0.2545 (2)0.076 (2)
H140.24330.92890.25340.091*
C150.5594 (7)1.0370 (7)0.13190 (19)0.0511 (14)
H15A0.66420.97990.12650.061*
H15B0.56991.08550.16260.061*
C160.5371 (8)1.1467 (6)0.0926 (2)0.0508 (14)
H16A0.45911.22320.10340.061*
H16B0.64931.19040.08530.061*
C170.4088 (9)1.1937 (7)0.0152 (2)0.0620 (17)
H17A0.50651.25520.00800.093*
H17B0.31791.25050.02980.093*
H17C0.36561.1505−0.01370.093*
C180.5928 (9)0.9836 (8)0.0258 (2)0.0673 (18)
H18A0.54540.9456−0.00340.101*
H18B0.62070.90490.04700.101*
H18C0.69691.03800.01890.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0457 (3)0.0544 (3)0.0300 (3)−0.0063 (4)−0.0057 (3)0.0011 (3)
S10.0712 (10)0.0874 (12)0.0424 (8)−0.0034 (9)−0.0207 (8)−0.0084 (9)
S20.0689 (11)0.0779 (12)0.0737 (12)0.0142 (10)−0.0035 (9)0.0054 (10)
N10.071 (3)0.078 (4)0.034 (2)−0.011 (3)−0.014 (2)0.000 (3)
N20.075 (4)0.151 (6)0.067 (4)−0.047 (4)0.029 (3)−0.049 (4)
N30.035 (2)0.050 (3)0.040 (2)−0.003 (2)0.0030 (19)−0.007 (2)
N40.038 (2)0.047 (2)0.032 (2)−0.002 (2)−0.0039 (17)0.000 (2)
N50.047 (2)0.047 (3)0.035 (2)−0.005 (2)0.0029 (19)0.006 (2)
C10.046 (3)0.043 (3)0.038 (3)−0.009 (2)0.000 (2)−0.005 (2)
C20.054 (4)0.080 (5)0.079 (5)−0.010 (3)−0.009 (4)−0.020 (4)
C30.041 (3)0.064 (4)0.048 (3)−0.003 (3)0.004 (3)−0.002 (3)
C40.050 (4)0.088 (5)0.095 (6)−0.030 (4)−0.005 (4)0.009 (4)
C50.054 (4)0.083 (5)0.094 (5)−0.025 (4)0.011 (4)0.027 (4)
C60.048 (3)0.070 (4)0.050 (3)0.000 (3)−0.001 (3)0.018 (3)
C70.032 (3)0.052 (3)0.032 (3)0.004 (2)0.006 (2)−0.001 (2)
C80.041 (3)0.042 (3)0.030 (2)0.015 (2)0.002 (2)−0.003 (2)
C90.048 (3)0.043 (3)0.033 (3)0.004 (3)−0.004 (2)0.001 (2)
C100.058 (4)0.111 (6)0.056 (4)0.034 (4)−0.006 (3)0.008 (4)
C110.064 (5)0.124 (7)0.061 (4)0.016 (4)−0.023 (3)0.016 (4)
C120.081 (5)0.085 (5)0.050 (4)−0.014 (4)−0.026 (4)0.022 (4)
C130.107 (7)0.134 (8)0.041 (4)0.031 (6)−0.009 (4)−0.007 (4)
C140.069 (4)0.124 (6)0.035 (3)0.044 (4)−0.006 (3)−0.010 (4)
C150.045 (3)0.063 (4)0.045 (3)−0.004 (3)−0.011 (2)0.006 (3)
C160.059 (3)0.051 (3)0.043 (3)−0.010 (3)−0.009 (3)0.003 (3)
C170.071 (4)0.069 (4)0.046 (3)−0.010 (3)−0.002 (3)0.019 (3)
C180.068 (4)0.067 (4)0.067 (4)0.002 (3)0.019 (3)0.002 (3)

Geometric parameters (Å, °)

Cu1—N11.937 (4)C7—C81.468 (7)
Cu1—N41.959 (4)C8—C91.487 (7)
Cu1—N32.034 (4)C9—C141.365 (8)
Cu1—N52.071 (4)C9—C101.376 (8)
Cu1—S22.679 (2)C10—C111.361 (9)
S1—C11.609 (5)C10—H100.9300
S2—C21.648 (9)C11—C121.341 (10)
N1—C11.149 (7)C11—H110.9300
N2—C21.082 (9)C12—C131.349 (11)
N3—C31.337 (7)C12—H120.9300
N3—C71.351 (6)C13—C141.369 (9)
N4—C81.283 (6)C13—H130.9300
N4—C151.457 (7)C14—H140.9300
N5—C181.461 (7)C15—C161.501 (8)
N5—C171.472 (7)C15—H15A0.9700
N5—C161.490 (7)C15—H15B0.9700
C3—C41.373 (9)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.389 (10)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.368 (9)C17—H17C0.9600
C5—H50.9300C18—H18A0.9600
C6—C71.386 (8)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
N1—Cu1—N4165.4 (2)C7—C8—C9121.7 (4)
N1—Cu1—N398.3 (2)C14—C9—C10118.0 (6)
N4—Cu1—N379.81 (18)C14—C9—C8121.0 (5)
N1—Cu1—N596.2 (2)C10—C9—C8121.0 (5)
N4—Cu1—N582.82 (17)C11—C10—C9120.8 (7)
N3—Cu1—N5160.36 (17)C11—C10—H10119.6
N1—Cu1—S297.53 (18)C9—C10—H10119.6
N4—Cu1—S297.02 (13)C12—C11—C10120.7 (7)
N3—Cu1—S292.79 (13)C12—C11—H11119.7
N5—Cu1—S298.38 (13)C10—C11—H11119.7
C2—S2—Cu1101.0 (3)C11—C12—C13119.3 (6)
C1—N1—Cu1170.7 (5)C11—C12—H12120.4
C3—N3—C7119.9 (5)C13—C12—H12120.4
C3—N3—Cu1127.0 (4)C12—C13—C14121.2 (7)
C7—N3—Cu1113.0 (3)C12—C13—H13119.4
C8—N4—C15125.9 (4)C14—C13—H13119.4
C8—N4—Cu1117.8 (3)C9—C14—C13120.0 (7)
C15—N4—Cu1116.2 (3)C9—C14—H14120.0
C18—N5—C17110.5 (5)C13—C14—H14120.0
C18—N5—C16111.0 (5)N4—C15—C16107.4 (4)
C17—N5—C16109.1 (4)N4—C15—H15A110.2
C18—N5—Cu1108.6 (4)C16—C15—H15A110.2
C17—N5—Cu1113.7 (4)N4—C15—H15B110.2
C16—N5—Cu1103.7 (3)C16—C15—H15B110.2
N1—C1—S1179.5 (6)H15A—C15—H15B108.5
N2—C2—S2176.5 (8)N5—C16—C15111.3 (5)
N3—C3—C4120.7 (6)N5—C16—H16A109.4
N3—C3—H3119.6C15—C16—H16A109.4
C4—C3—H3119.6N5—C16—H16B109.4
C3—C4—C5120.0 (6)C15—C16—H16B109.4
C3—C4—H4120.0H16A—C16—H16B108.0
C5—C4—H4120.0N5—C17—H17A109.5
C6—C5—C4118.9 (6)N5—C17—H17B109.5
C6—C5—H5120.6H17A—C17—H17B109.5
C4—C5—H5120.6N5—C17—H17C109.5
C5—C6—C7119.1 (6)H17A—C17—H17C109.5
C5—C6—H6120.5H17B—C17—H17C109.5
C7—C6—H6120.5N5—C18—H18A109.5
N3—C7—C6121.3 (5)N5—C18—H18B109.5
N3—C7—C8114.1 (4)H18A—C18—H18B109.5
C6—C7—C8124.5 (5)N5—C18—H18C109.5
N4—C8—C7114.8 (4)H18A—C18—H18C109.5
N4—C8—C9123.5 (5)H18B—C18—H18C109.5
N1—Cu1—S2—C2134.4 (3)C3—C4—C5—C6−0.7 (11)
N4—Cu1—S2—C2−44.5 (3)C4—C5—C6—C7−1.7 (10)
N3—Cu1—S2—C235.6 (3)C3—N3—C7—C60.7 (8)
N5—Cu1—S2—C2−128.2 (3)Cu1—N3—C7—C6−175.7 (4)
N1—Cu1—N3—C3−8.9 (5)C3—N3—C7—C8177.9 (4)
N4—Cu1—N3—C3−174.2 (5)Cu1—N3—C7—C81.5 (5)
N5—Cu1—N3—C3−146.0 (5)C5—C6—C7—N31.7 (9)
S2—Cu1—N3—C389.2 (4)C5—C6—C7—C8−175.2 (5)
N1—Cu1—N3—C7167.2 (4)C15—N4—C8—C7−176.7 (5)
N4—Cu1—N3—C71.9 (3)Cu1—N4—C8—C78.0 (6)
N5—Cu1—N3—C730.1 (7)C15—N4—C8—C90.2 (8)
S2—Cu1—N3—C7−94.7 (3)Cu1—N4—C8—C9−175.1 (4)
N1—Cu1—N4—C8−89.6 (9)N3—C7—C8—N4−6.1 (6)
N3—Cu1—N4—C8−5.7 (4)C6—C7—C8—N4171.0 (5)
N5—Cu1—N4—C8−176.5 (4)N3—C7—C8—C9176.9 (4)
S2—Cu1—N4—C885.9 (4)C6—C7—C8—C9−6.0 (8)
N1—Cu1—N4—C1594.7 (9)N4—C8—C9—C14118.4 (7)
N3—Cu1—N4—C15178.6 (4)C7—C8—C9—C14−64.9 (7)
N5—Cu1—N4—C157.8 (4)N4—C8—C9—C10−59.2 (8)
S2—Cu1—N4—C15−89.8 (4)C7—C8—C9—C10117.5 (7)
N1—Cu1—N5—C18−75.9 (4)C14—C9—C10—C111.3 (11)
N4—Cu1—N5—C1889.4 (4)C8—C9—C10—C11179.0 (7)
N3—Cu1—N5—C1861.5 (7)C9—C10—C11—C12−2.7 (13)
S2—Cu1—N5—C18−174.5 (4)C10—C11—C12—C132.5 (13)
N1—Cu1—N5—C1747.6 (4)C11—C12—C13—C14−1.1 (14)
N4—Cu1—N5—C17−147.1 (4)C10—C9—C14—C130.1 (11)
N3—Cu1—N5—C17−175.0 (5)C8—C9—C14—C13−177.6 (7)
S2—Cu1—N5—C17−51.0 (4)C12—C13—C14—C9−0.2 (14)
N1—Cu1—N5—C16165.9 (4)C8—N4—C15—C16−159.8 (5)
N4—Cu1—N5—C16−28.7 (3)Cu1—N4—C15—C1615.6 (6)
N3—Cu1—N5—C16−56.7 (6)C18—N5—C16—C15−70.3 (6)
S2—Cu1—N5—C1667.3 (3)C17—N5—C16—C15167.6 (5)
C7—N3—C3—C4−3.2 (8)Cu1—N5—C16—C1546.1 (5)
Cu1—N3—C3—C4172.7 (5)N4—C15—C16—N5−41.5 (6)
N3—C3—C4—C53.2 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2135).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandra, S. & Sangeetika, X. (2004). Spectrochim. Acta Part A, 60, 147–153. [PubMed]
  • Guo, Z., Li, L., Wang, C., Li, J. & Xu, T. (2009). Acta Cryst. E65, m1049. [PMC free article] [PubMed]
  • Ramesh, R. & Maheswaran, S. (2003). J. Inorg. Biochem. 96, 457–462. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, Q., Xu, L.-J., Ji, J.-X., Li, Y.-M., Wang, R.-H., Zhou, Z.-Y., Cao, R., Hong, M.-C. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254–1257.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography