PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3039.
Published online 2009 November 7. doi:  10.1107/S1600536809045772
PMCID: PMC2972010

4-(2,3-Dihydroxybenzyl­ideneamino)-3-methyl-1H-1,2,4-triazol-5(4H)-one

Abstract

All the non-H atoms of the title compound, C10H10N4O3, are almost coplanar, the maximum deviation from planarity being 0.065 (3) Å. The dihedral angle between the aromatic rings is 1.66 (6)°. The mol­ecule adopts the enol–imine tautomeric form with an intra­molecular hydrogen-bonding inter­action between the Schiff base N atom and the hydr­oxy group. In the crystal, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For the synthesis of the title compound, see Ünver et al. (2008 [triangle]). For related compounds, see: Köysal et al. (2007 [triangle]); Tanak et al., (2009 [triangle]). For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3039-scheme1.jpg

Experimental

Crystal data

  • C10H10N4O3
  • M r = 234.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3039-efi1.jpg
  • a = 13.944 (3) Å
  • b = 6.2551 (7) Å
  • c = 11.882 (2) Å
  • β = 93.857 (17)°
  • V = 1034.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.60 × 0.42 × 0.20 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.944, T max = 0.974
  • 3000 measured reflections
  • 1118 independent reflections
  • 1058 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.116
  • S = 1.09
  • 1118 reflections
  • 159 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045772/bt5118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045772/bt5118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer

supplementary crystallographic information

Comment

The 1,2,4-triazole ring is strictly planar and the dihedral angle between the aromatic ring systems [C1/C6 and C8/N2] is 1.66 (6)°. The phenol H atom forms a strong intramolecular hydrogen bond with the imine N atom which is consistent with related structures (Köysal et al., 2007; Tanak et al., 2009), Fig 2.

The torsion angle C1—C7—N1—N2, bridged the aromatic ring systems, is 178.5 (2)° shows that for the title compound, the side chain conformation induced by the anti conformations, respectively. The interatomic distances within the triazole ring of are not equal. The C9—N4 is double bond and shorter than the conjugated C8—N2 and C9—N2 bonds. The length of the C7=N1 double bond is 1.278 (3) Å, it is almost consistent with standars 1.28 value of C=N double bond. The imino group is coplanar with the hydroxyphenyl ring as it can be shown by the C6—C1—C7—N1 torsion angle is -1.6 (3) Å.

Compound (I) is stabilized by N—H···O and O—H···O intermolecular contacts which link the molecules infinite chain and O—H···O, C—H···O and C—H···N type intramolecular hydrogen bonds. N3—H3···O3 (symmetry code: -x + 3/2,y + 1/2,-z + 1) bond is generates eight-membered ring, producing a R22(8) motif (Bernstein, et al., 1995). An intramolecular O1—H1···N1 hydrogen bond generates a six-membered ring, producing a S(6) ring motif (Bernstein, et al., 1995), resulting in approximate planarity of the molecular skeleton [O···N= 2.636 (2) Å].

Experimental

The title compound, C10H10N4O3, was synthesized according to the method of Ünver et al. (2008).

Refinement

H atoms were refined using a riding model with Caromatic—H = 0.93 Å, Cmethyl—H = 0.96 Å. 830 Friedel-related reflections were merged in the final refinement because of the meaningless value of the absolute structure parameter (Flack, 1983).

Figures

Fig. 1.
A view of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.
Fig. 2.
A partial packing of the title compound.

Crystal data

C10H10N4O3F(000) = 488
Mr = 234.22Dx = 1.505 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4561 reflections
a = 13.944 (3) Åθ = 1.7–28.0°
b = 6.2551 (7) ŵ = 0.12 mm1
c = 11.882 (2) ÅT = 296 K
β = 93.857 (17)°Prism., yellow
V = 1034.0 (3) Å30.60 × 0.42 × 0.20 mm
Z = 4

Data collection

Stoe IPDS II diffractometer1118 independent reflections
Radiation source: fine-focus sealed tube1058 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.7°
rotation method scansh = −17→17
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −7→7
Tmin = 0.944, Tmax = 0.974l = −14→12
3000 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116w = 1/[σ2(Fo2) + (0.0817P)2 + 0.2531P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1118 reflectionsΔρmax = 0.31 e Å3
159 parametersΔρmin = −0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.42468 (17)0.3934 (5)0.2738 (2)0.0359 (6)
C20.4051 (2)0.2125 (6)0.3388 (2)0.0437 (7)
H80.43840.19270.40840.052*
C30.3379 (2)0.0655 (5)0.3012 (3)0.0468 (7)
H90.3259−0.05350.34510.056*
C40.28754 (19)0.0937 (5)0.1977 (3)0.0423 (7)
H440.2419−0.00670.17220.051*
C50.30481 (17)0.2698 (5)0.1325 (2)0.0367 (6)
C60.37377 (17)0.4209 (5)0.1696 (2)0.0339 (6)
C70.49894 (18)0.5409 (5)0.3167 (2)0.0375 (6)
H130.53010.51900.38740.045*
C80.64752 (17)0.8427 (5)0.3996 (2)0.0369 (6)
C90.61215 (17)1.0237 (5)0.2381 (2)0.0367 (6)
C100.5679 (2)1.0718 (6)0.1242 (2)0.0463 (7)
H15A0.52400.95950.10090.069*
H15B0.61721.08210.07180.069*
H15C0.53381.20490.12590.069*
N10.52117 (14)0.7007 (4)0.25680 (18)0.0346 (5)
N20.58991 (14)0.8440 (4)0.29821 (17)0.0347 (5)
N30.69709 (17)1.0251 (5)0.3919 (2)0.0441 (6)
H30.73801.06930.44420.053*
N40.67653 (16)1.1360 (5)0.2924 (2)0.0436 (6)
O10.38826 (15)0.5879 (4)0.09998 (18)0.0464 (6)
O20.25821 (14)0.3108 (4)0.03004 (16)0.0478 (6)
H20.21970.21460.01410.072*
O30.64859 (14)0.7078 (4)0.47417 (16)0.0471 (5)
H10.438 (3)0.656 (9)0.131 (4)0.074 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0356 (12)0.0356 (15)0.0357 (12)−0.0006 (11)−0.0031 (10)−0.0023 (12)
C20.0501 (15)0.0436 (17)0.0362 (13)−0.0019 (14)−0.0062 (11)0.0060 (14)
C30.0557 (16)0.0408 (17)0.0446 (15)−0.0055 (14)0.0084 (12)0.0037 (13)
C40.0385 (13)0.0375 (15)0.0507 (16)−0.0066 (12)0.0007 (11)−0.0069 (13)
C50.0301 (11)0.0395 (16)0.0396 (13)0.0018 (11)−0.0040 (10)−0.0078 (11)
C60.0325 (11)0.0311 (13)0.0371 (12)0.0012 (11)−0.0041 (9)−0.0008 (11)
C70.0393 (12)0.0398 (16)0.0322 (11)0.0013 (12)−0.0072 (9)−0.0004 (12)
C80.0327 (11)0.0408 (14)0.0354 (12)0.0039 (11)−0.0101 (9)−0.0046 (12)
C90.0360 (12)0.0369 (14)0.0365 (12)0.0004 (11)−0.0031 (9)0.0007 (12)
C100.0431 (14)0.0524 (19)0.0420 (14)−0.0001 (13)−0.0081 (11)0.0084 (14)
N10.0334 (10)0.0329 (12)0.0360 (10)−0.0011 (9)−0.0096 (8)−0.0030 (10)
N20.0326 (10)0.0359 (12)0.0339 (10)−0.0007 (9)−0.0107 (8)−0.0002 (10)
N30.0433 (11)0.0432 (14)0.0431 (12)−0.0087 (11)−0.0172 (9)−0.0034 (12)
N40.0402 (11)0.0448 (14)0.0445 (12)−0.0061 (11)−0.0077 (9)0.0013 (12)
O10.0493 (11)0.0393 (12)0.0472 (11)−0.0091 (10)−0.0206 (9)0.0101 (9)
O20.0463 (10)0.0471 (13)0.0470 (12)−0.0054 (10)−0.0183 (9)−0.0041 (10)
O30.0477 (10)0.0514 (13)0.0392 (10)−0.0007 (10)−0.0178 (8)0.0063 (10)

Geometric parameters (Å, °)

C1—C61.396 (4)C8—O31.223 (4)
C1—C21.407 (4)C8—N31.340 (4)
C1—C71.453 (4)C8—N21.402 (3)
C2—C31.367 (4)C9—N41.280 (4)
C2—H80.9300C9—N21.378 (4)
C3—C41.386 (4)C9—C101.480 (4)
C3—H90.9300C10—H15A0.9600
C4—C51.377 (4)C10—H15B0.9600
C4—H440.9300C10—H15C0.9600
C5—O21.365 (3)N1—N21.379 (3)
C5—C61.398 (4)N3—N41.384 (4)
C6—O11.356 (3)N3—H30.8600
C7—N11.277 (4)O1—H10.87 (5)
C7—H130.9300O2—H20.8200
C6—C1—C2118.7 (2)O3—C8—N2127.2 (3)
C6—C1—C7122.7 (2)N3—C8—N2101.8 (2)
C2—C1—C7118.6 (2)N4—C9—N2111.1 (2)
C3—C2—C1121.1 (3)N4—C9—C10125.8 (3)
C3—C2—H8119.5N2—C9—C10123.0 (3)
C1—C2—H8119.5C9—C10—H15A109.5
C2—C3—C4120.0 (3)C9—C10—H15B109.5
C2—C3—H9120.0H15A—C10—H15B109.5
C4—C3—H9120.0C9—C10—H15C109.5
C5—C4—C3120.3 (3)H15A—C10—H15C109.5
C5—C4—H44119.9H15B—C10—H15C109.5
C3—C4—H44119.9C7—N1—N2119.9 (2)
O2—C5—C4124.1 (2)N1—N2—C9121.4 (2)
O2—C5—C6115.5 (3)N1—N2—C8130.3 (2)
C4—C5—C6120.4 (2)C9—N2—C8108.3 (2)
O1—C6—C1123.3 (2)C8—N3—N4114.0 (2)
O1—C6—C5117.1 (2)C8—N3—H3123.0
C1—C6—C5119.6 (3)N4—N3—H3123.0
N1—C7—C1119.7 (2)C9—N4—N3104.7 (2)
N1—C7—H13120.2C6—O1—H1105 (3)
C1—C7—H13120.2C5—O2—H2109.5
O3—C8—N3131.0 (2)
C6—C1—C2—C30.2 (4)C1—C7—N1—N2178.4 (2)
C7—C1—C2—C3−178.2 (3)C7—N1—N2—C9−176.8 (2)
C1—C2—C3—C4−0.2 (5)C7—N1—N2—C83.3 (4)
C2—C3—C4—C5−0.1 (4)N4—C9—N2—N1179.0 (2)
C3—C4—C5—O2−179.6 (3)C10—C9—N2—N1−2.6 (4)
C3—C4—C5—C60.5 (4)N4—C9—N2—C8−1.1 (3)
C2—C1—C6—O1−179.0 (2)C10—C9—N2—C8177.3 (3)
C7—C1—C6—O1−0.7 (4)O3—C8—N2—N10.5 (5)
C2—C1—C6—C50.2 (4)N3—C8—N2—N1−178.5 (3)
C7—C1—C6—C5178.5 (2)O3—C8—N2—C9−179.4 (3)
O2—C5—C6—O1−1.2 (4)N3—C8—N2—C91.6 (3)
C4—C5—C6—O1178.7 (2)O3—C8—N3—N4179.4 (3)
O2—C5—C6—C1179.5 (2)N2—C8—N3—N4−1.7 (3)
C4—C5—C6—C1−0.5 (4)N2—C9—N4—N30.0 (3)
C6—C1—C7—N1−1.6 (4)C10—C9—N4—N3−178.3 (3)
C2—C1—C7—N1176.7 (3)C8—N3—N4—C91.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.112.842 (3)148
N3—H3···O3ii0.862.002.830 (3)163
O1—H1···N10.87 (5)1.85 (5)2.634 (3)148 (4)

Symmetry codes: (i) −x+1/2, y−1/2, −z; (ii) −x+3/2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5118).

References

  • Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34. 1555–1573.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Köysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  • Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291. [PMC free article] [PubMed]
  • Ünver, Y., Düğdü, E., Sancak, K., Er, M. & Karaoğlu, Ş. A. (2008). Turk J. Chem. 32, 441–455.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography