PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3091.
Published online 2009 November 14. doi:  10.1107/S1600536809047023
PMCID: PMC2972009

(E)-4-[4-(Dimethyl­amino)benzyl­ideneamino]benzonitrile

Abstract

The mol­ecule of the title compound, C16H15N3, displays a trans configuration with respect to the C=N double bond. The mol­ecule is not planar, the dihedral angle between the benzene rings being 57.83 (9)°. The crystal packing is stabilized only by van der Waals inter­actions.

Related literature

For the pharmacological activity of Schiff base compounds, see: Zhou et al. (2000 [triangle]); Sriram et al. (2006 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3091-scheme1.jpg

Experimental

Crystal data

  • C16H15N3
  • M r = 249.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3091-efi1.jpg
  • a = 9.733 (6) Å
  • b = 16.159 (9) Å
  • c = 9.103 (6) Å
  • β = 110.644 (12)°
  • V = 1339.8 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.985, T max = 0.985
  • 13048 measured reflections
  • 2610 independent reflections
  • 2134 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.221
  • S = 1.09
  • 2610 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047023/rz2389sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047023/rz2389Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology (fund No. 200813).

supplementary crystallographic information

Comment

Schiff bases compounds are of great interest in many fields of chemistry and biochemistry, primarily due to significant pharmacological activities, e. g. anticancer (Zhou et al., 2000) and anti-HIV (Sriram et al., 2006) activities. In addition, Schiff base compounds play an important role in the development of coordination chemistry related to magnetism and catalysis. Here, we report the synthesis and crystal structure of the title compound.

The molecular structure of the the title compound is shown in Fig. 1. All bond lengths (Allen et al., 1987) and angles in the molecule are normal. The N=C bond distance is 1.288 (3) Å. The structure displays a trans configuration about the central C9=N2 double bond. The molecule is not planar, as indicated by the dihedral angle between the two benzene rings of 57.83 (9)°. The crystal packing is stabilized only by van der Waals interactions.

Experimental

A solution of 4-(dimethylamino)benzaldehyde (0.596 g, 4 mmol) in ethanol (20 ml) was added to a solution of 4-aminobenzonitrile (0.472 g, 4 mmol) in methanol (20 ml), and the mixture stirred for 6 h under reflux. The resulting yellow precipitate was filtered off and crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

All the H atoms were located geometrically and treated as riding atoms with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C16H15N3F(000) = 528
Mr = 249.31Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3347 reflections
a = 9.733 (6) Åθ = 2.2–27.5°
b = 16.159 (9) ŵ = 0.08 mm1
c = 9.103 (6) ÅT = 293 K
β = 110.644 (12)°Block, yellow
V = 1339.8 (14) Å30.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2610 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
graphiteRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −19→19
Tmin = 0.985, Tmax = 0.985l = −11→11
13048 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.1227P)2 + 0.7975P] where P = (Fo2 + 2Fc2)/3
2610 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N20.9054 (2)0.11253 (12)0.0481 (2)0.0259 (5)
N11.3132 (2)0.12345 (13)0.7796 (2)0.0266 (5)
C41.2390 (3)0.13388 (14)0.6221 (3)0.0224 (5)
C140.7447 (3)0.19677 (16)−0.3581 (3)0.0279 (6)
H14A0.72620.2472−0.41050.033*
C150.8167 (3)0.19445 (15)−0.1968 (3)0.0254 (5)
H15A0.84790.2435−0.14150.030*
C91.0202 (3)0.15527 (14)0.1238 (3)0.0246 (5)
H9A1.06060.18970.06780.030*
C100.8427 (2)0.11873 (14)−0.1164 (3)0.0222 (5)
C120.7285 (3)0.04706 (15)−0.3620 (3)0.0278 (6)
H12A0.7008−0.0022−0.41740.033*
C110.7979 (3)0.04566 (15)−0.2013 (3)0.0280 (6)
H11A0.8151−0.0048−0.14870.034*
C61.0225 (3)0.11201 (14)0.3895 (3)0.0247 (5)
H6A0.92820.09070.34390.030*
C160.6232 (3)0.12454 (17)−0.6090 (3)0.0344 (6)
C130.7000 (3)0.12305 (15)−0.4417 (3)0.0264 (6)
C51.0934 (3)0.10420 (15)0.5487 (3)0.0249 (5)
H5A1.04560.07920.60920.030*
C21.2299 (3)0.18366 (15)0.3669 (3)0.0260 (6)
H2B1.27490.21150.30660.031*
C31.3042 (3)0.17532 (15)0.5260 (3)0.0265 (6)
H3A1.39830.19710.57080.032*
C11.0889 (3)0.15156 (14)0.2934 (3)0.0235 (5)
N30.5616 (3)0.12575 (18)−0.7415 (3)0.0523 (8)
C81.2478 (3)0.0794 (2)0.8776 (3)0.0427 (7)
H8A1.14470.07210.82110.064*
H8B1.26150.11080.97130.064*
H8C1.29390.02630.90530.064*
C71.4701 (3)0.14047 (19)0.8465 (3)0.0350 (6)
H7A1.50010.16990.77130.052*
H7B1.52310.08920.87290.052*
H7C1.49040.17350.93950.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0267 (10)0.0271 (10)0.0214 (10)0.0019 (8)0.0054 (9)0.0007 (8)
N10.0246 (11)0.0340 (12)0.0196 (10)−0.0042 (8)0.0058 (8)−0.0022 (8)
C40.0236 (12)0.0212 (11)0.0222 (11)0.0013 (9)0.0078 (9)−0.0028 (9)
C140.0284 (13)0.0287 (13)0.0262 (13)0.0007 (10)0.0090 (10)0.0048 (10)
C150.0266 (12)0.0251 (12)0.0238 (12)−0.0028 (9)0.0080 (10)−0.0008 (9)
C90.0244 (12)0.0227 (12)0.0263 (12)0.0026 (9)0.0084 (10)0.0023 (9)
C100.0184 (11)0.0278 (12)0.0203 (11)0.0004 (9)0.0067 (9)0.0014 (9)
C120.0284 (13)0.0276 (13)0.0268 (13)0.0012 (10)0.0091 (10)−0.0042 (10)
C110.0308 (13)0.0245 (12)0.0275 (13)0.0066 (10)0.0087 (10)0.0037 (9)
C60.0199 (11)0.0263 (12)0.0269 (12)−0.0012 (9)0.0071 (10)−0.0025 (9)
C160.0346 (14)0.0389 (15)0.0283 (15)0.0001 (11)0.0093 (12)−0.0003 (11)
C130.0234 (12)0.0340 (14)0.0220 (12)0.0031 (10)0.0083 (10)0.0018 (9)
C50.0251 (12)0.0266 (12)0.0246 (12)−0.0018 (9)0.0109 (10)−0.0020 (9)
C20.0261 (12)0.0252 (12)0.0276 (12)−0.0024 (10)0.0103 (10)0.0031 (9)
C30.0232 (12)0.0279 (12)0.0258 (12)−0.0052 (9)0.0055 (10)−0.0016 (9)
C10.0244 (12)0.0211 (11)0.0237 (12)0.0017 (9)0.0066 (10)−0.0011 (9)
N30.0589 (18)0.0662 (19)0.0246 (13)−0.0025 (14)0.0058 (12)−0.0003 (11)
C80.0412 (16)0.063 (2)0.0232 (13)−0.0160 (14)0.0105 (12)0.0014 (12)
C70.0250 (13)0.0527 (17)0.0237 (12)−0.0017 (11)0.0042 (10)−0.0014 (11)

Geometric parameters (Å, °)

N2—C91.288 (3)C11—H11A0.9300
N2—C101.408 (3)C6—C51.374 (3)
N1—C41.370 (3)C6—C11.411 (3)
N1—C81.452 (3)C6—H6A0.9300
N1—C71.457 (3)C16—N31.143 (4)
C4—C31.417 (3)C16—C131.441 (3)
C4—C51.420 (3)C5—H5A0.9300
C14—C151.387 (3)C2—C31.379 (3)
C14—C131.398 (4)C2—C11.397 (3)
C14—H14A0.9300C2—H2B0.9300
C15—C101.402 (3)C3—H3A0.9300
C15—H15A0.9300C8—H8A0.9600
C9—C11.451 (3)C8—H8B0.9600
C9—H9A0.9300C8—H8C0.9600
C10—C111.394 (3)C7—H7A0.9600
C12—C111.378 (3)C7—H7B0.9600
C12—C131.403 (3)C7—H7C0.9600
C12—H12A0.9300
C9—N2—C10120.0 (2)N3—C16—C13179.6 (3)
C4—N1—C8121.3 (2)C14—C13—C12119.8 (2)
C4—N1—C7120.2 (2)C14—C13—C16120.5 (2)
C8—N1—C7117.2 (2)C12—C13—C16119.7 (2)
N1—C4—C3121.3 (2)C6—C5—C4120.8 (2)
N1—C4—C5121.4 (2)C6—C5—H5A119.6
C3—C4—C5117.3 (2)C4—C5—H5A119.6
C15—C14—C13119.8 (2)C3—C2—C1122.0 (2)
C15—C14—H14A120.1C3—C2—H2B119.0
C13—C14—H14A120.1C1—C2—H2B119.0
C14—C15—C10120.4 (2)C2—C3—C4120.7 (2)
C14—C15—H15A119.8C2—C3—H3A119.6
C10—C15—H15A119.8C4—C3—H3A119.6
N2—C9—C1122.3 (2)C2—C1—C6117.3 (2)
N2—C9—H9A118.9C2—C1—C9120.0 (2)
C1—C9—H9A118.9C6—C1—C9122.6 (2)
C11—C10—C15119.1 (2)N1—C8—H8A109.5
C11—C10—N2117.6 (2)N1—C8—H8B109.5
C15—C10—N2123.2 (2)H8A—C8—H8B109.5
C11—C12—C13119.8 (2)N1—C8—H8C109.5
C11—C12—H12A120.1H8A—C8—H8C109.5
C13—C12—H12A120.1H8B—C8—H8C109.5
C12—C11—C10121.0 (2)N1—C7—H7A109.5
C12—C11—H11A119.5N1—C7—H7B109.5
C10—C11—H11A119.5H7A—C7—H7B109.5
C5—C6—C1121.7 (2)N1—C7—H7C109.5
C5—C6—H6A119.1H7A—C7—H7C109.5
C1—C6—H6A119.1H7B—C7—H7C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2389).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129. [PubMed]
  • Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vittal, J. J. & You, X.-Z. (2000). J. Mol. Struct. 524, 241–250.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography