PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): i85.
Published online 2009 November 7. doi:  10.1107/S1600536809045632
PMCID: PMC2972008

Copper(II) hydrogenphosphate, CuHPO4

Abstract

The title compound, CuHPO4, has been synthesized from a mixture of phospho­ric acid and copper oxide. It has the same composition as MHPO4 (M = Ca, Ba, Pb, Sr or Sn), but adopts a rhombohedral structure with all atoms on general positions. The structure features distorted PO4 tetra­hedra linked by copper, forming 12-membered rings. The CuII atom is coordinated by five O atoms in a distorted square-pyramidal manner. O—H(...)O hydrogen bonding leads to an additional stabilization of the structure.

Related literature

For the structure of CaHPO4, see: Smith et al. (1955 [triangle]); MacLennan & Beevers (1955 [triangle]). For a report about BaHPO4 and PbHPO4, see: Bengtsson (1941 [triangle]). For the structure of SnHPO4, see: Berndt & Lamberg (1971 [triangle]). For information about SrHPO4, see: Boudjada et al. (1978 [triangle]). For a report about CuHPO4·H2O, see: Boudjada (1980 [triangle]). For information about CuHPO4·0.5 H2O see: Sierra et al. (2003 [triangle]). For the structure of α-Cu2P2O7, see: Lukaszewicz (1966 [triangle]). For information about β-Cu2P2O7, see: Robertson & Calvo (1968 [triangle]). For a report about Cu2P4O12, see: Laügt et al. (1972 [triangle]).

Experimental

Crystal data

  • CuHPO4
  • M r = 159.52
  • Rhombohedral, An external file that holds a picture, illustration, etc.
Object name is e-65-00i85-efi1.jpg
  • a = 9.5145 (4) Å
  • α = 114.678 (2)°
  • V = 495.88 (6) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 6.92 mm−1
  • T = 183 K
  • 0.05 × 0.03 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 3338 measured reflections
  • 755 independent reflections
  • 654 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.066
  • S = 1.02
  • 755 reflections
  • 60 parameters
  • All H-atom parameters refined
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor 1997 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045632/fi2089sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045632/fi2089Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The hydrogen phosphate of copper(II) adopts the formula MHPO4 like other divalent cations. However, the monetites CaHPO4 (triclinic, P1; Smith et al., 1955), BaHPO4 (orthorhombic, Pccn; Bengtsson, 1941) and PbHPO4 (monoclinic, P2/c or Pc; Bengtsson, 1941) or SrHPO4 (triclinic, P1; Boudjada et al., 1978) and SnHPO4 (monoclinic, P21/c; Berndt & Lamberg, 1971) have very different structures, which could be due to the much bigger ionic radii of the metals in comparison to copper. CuHPO4 has a rhombohedral (R3) structure. The coordination of Cu can be described as a square pyramid, with the apical C–O bond being significantly longer than the other four bonds. The coordination in the base plane could even be described as a strongly squeezed, almost planar tetrahedron (Fig 1). The Cu ions are linked by distorted PO4 tetrahedra yielding twelve-membered rings (see Fig. 4, and Fig. 5). The distortion of the phosphate tetrahedra is caused by the OH-groups, which point towards the centre of the rings. There is only one hydrogen bond present in the asymmetric unit (see hydrogen bond geometry). But in the whole crystal structure, this leads to two intramolecular and three intermolecular hydrogen bonds (see Fig. 2 and Fig. 3). In other copper phosphates, the copper atoms are coordinated by four, five and/or six oxygen atoms, respectively (Boudjada, 1980; Sierra et al., 2003; Lukaszewicz, 1966; Robertson & Calvo, 1968; Laügt et al., 1972). CuHPO4 formed only trigonal bipyramids of CuO5.

Experimental

Phosphoric acid (65%) and copper oxide were mixed in a mortar for several hours. Afterwards the mixture was tempered at 373 K for a week. CuHPO4 was obtained in the form of emerald-green needles, which decompose by further tempering.

Refinement

The hydrogen atom of the hydroxyd-group was located by difference Fourier synthesis and refined isotropically.

Figures

Fig. 1.
The molecular structure of 1, showing 50% probability displacement ellipsoides and the numbering scheme for the complete coordination polyhedron about Cu1 (Symmetry codes: (A) z,x-1,y-1; (B) -z+2,-x+2,-y+1; (C) -x+2,-y+1,-z+1 and (D) y,z,x-1.)
Fig. 2.
The intra and inter molecular O2—H2···O1 bonding about Cu1 (Symmetry codes: (A) z,x-1,y; (B) y+1,z,x-1 and (C) -y+1,-z+1,-x+1.)
Fig. 3.
The intra and inter molecular O2—H2···O1 bonding about Cu1 (Symmetry codes: (A) z,x-1,y; (B) y+1,z,x-1 and (C) -y+1,-z+1,-x+1.)
Fig. 4.
View of the unit cell of CuHPO~4~ along the z axis.
Fig. 5.
Projection of the CuHPO4 structure along the z axis, with applied polyhedrale.

Crystal data

CuHPO4Dx = 3.205 Mg m3
Mr = 159.52Mo Kα radiation, λ = 0.71073 Å
Rhombohedral, R3Cell parameters from 3338 reflections
Hall symbol: -P 3*θ = 3.4–27.5°
a = 9.5145 (4) ŵ = 6.92 mm1
α = 114.678 (2)°T = 183 K
V = 495.88 (6) Å3Needles, green
Z = 60.05 × 0.03 × 0.03 mm
F(000) = 462

Data collection

Bruker–Nonius KappaCCD diffractometer654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
graphiteθmax = 27.5°, θmin = 3.4°
[var phi] and ω scansh = −11→12
3338 measured reflectionsk = −12→12
755 independent reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.066w = 1/[σ2(Fo2) + (0.0403P)2 + 0.166P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
755 reflectionsΔρmax = 0.62 e Å3
60 parametersΔρmin = −0.66 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.91592 (6)0.43161 (6)0.19005 (6)0.00678 (18)
P11.31526 (12)0.74973 (12)0.68353 (13)0.0059 (2)
O11.1314 (4)0.5149 (4)0.4494 (3)0.0083 (5)
O21.5471 (4)0.8561 (4)0.7726 (4)0.0106 (5)
O31.3326 (3)0.7437 (3)0.8490 (3)0.0077 (5)
O41.2753 (4)0.8882 (3)0.6838 (3)0.0087 (5)
H21.555 (8)0.866 (8)0.689 (8)0.040 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0063 (2)0.0080 (3)0.0069 (2)0.0048 (2)0.0048 (2)0.0059 (2)
P10.0063 (4)0.0066 (4)0.0068 (4)0.0049 (3)0.0050 (3)0.0054 (3)
O10.0084 (11)0.0069 (11)0.0079 (11)0.0053 (10)0.0055 (10)0.0050 (10)
O20.0096 (11)0.0151 (12)0.0120 (11)0.0095 (10)0.0086 (10)0.0106 (10)
O30.0079 (10)0.0090 (11)0.0074 (10)0.0056 (9)0.0060 (9)0.0063 (9)
O40.0109 (11)0.0085 (10)0.0070 (10)0.0076 (9)0.0059 (9)0.0058 (9)

Geometric parameters (Å, °)

Cu1—O11.925 (2)P1—O31.541 (2)
Cu1—O4i1.932 (2)P1—O21.571 (2)
Cu1—O3ii1.971 (2)O2—H20.87 (5)
Cu1—O3iii1.992 (2)O3—Cu1v1.971 (2)
Cu1—O4iv2.360 (2)O3—Cu1iii1.992 (2)
P1—O41.515 (2)O4—Cu1vi1.932 (2)
P1—O11.530 (2)O4—Cu1vii2.360 (2)
O1—Cu1—O4i163.91 (9)O1—P1—O3110.78 (12)
O1—Cu1—O3ii91.59 (9)O4—P1—O2111.98 (13)
O4i—Cu1—O3ii94.28 (9)O1—P1—O2109.68 (13)
O1—Cu1—O3iii94.20 (9)O3—P1—O2102.64 (12)
O4i—Cu1—O3iii84.72 (9)P1—O1—Cu1123.24 (13)
O3ii—Cu1—O3iii162.12 (8)P1—O2—H2110 (3)
O1—Cu1—O4iv112.90 (9)P1—O3—Cu1v128.15 (13)
O4i—Cu1—O4iv83.13 (4)P1—O3—Cu1iii126.96 (13)
O3ii—Cu1—O4iv74.64 (8)Cu1v—O3—Cu1iii101.63 (10)
O3iii—Cu1—O4iv87.53 (8)P1—O4—Cu1vi132.92 (13)
O4—P1—O1110.21 (12)P1—O4—Cu1vii125.51 (12)
O4—P1—O3111.35 (12)Cu1vi—O4—Cu1vii90.84 (8)

Symmetry codes: (i) z, x−1, y−1; (ii) −z+2, −x+2, −y+1; (iii) −x+2, −y+1, −z+1; (iv) y, z, x−1; (v) −y+2, −z+1, −x+2; (vi) y+1, z+1, x; (vii) z+1, x, y.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.87 (5)1.93 (5)2.800 (3)176 (5)

Symmetry codes: (ii) −z+2, −x+2, −y+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2089).

References

  • Bengtsson, E. (1941). Struct. Rep. 8, 189–199.
  • Berndt, A. F. & Lamberg, R. (1971). Acta Cryst. B27, 1092–1094.
  • Boudjada, A. (1980). Mater. Res. Bull. 15, 1083–1090.
  • Boudjada, A., Masse, R. & Guitel, J. C. (1978). Acta Cryst. B34, 2692–2695.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Laügt, M., Guitel, J. C., Tordjman, I. & Bassi, G. (1972). Acta Cryst. B28, 201–208.
  • Lukaszewicz, K. (1966). Bull. Acad. Polon. Sci. Ser. Sci. Chim. 14, 725–729.
  • MacLennan, G. & Beevers, C. A. (1955). Acta Cryst. 8, 579–583.
  • Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Robertson, B. E. & Calvo, C. (1968). Canad. J. Chem., 46, 605–612.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sierra, G. A., Isaza, A. E., Palacio, L. A. & Saldarriaga, C. (2003). Powder Diffr. 18, 36–37.
  • Smith, J. P., Lehr, J. R. & Brown, W. E. (1955). Am. Mineral. 40, 893–899.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography