PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3212.
Published online 2009 November 25. doi:  10.1107/S1600536809049885
PMCID: PMC2972005

6-Chloro-N 2,N 4-di-p-tolyl-1,3,5-triazine-2,4-diamine dimethyl­formamide monosolvate

Abstract

The title compound, C17H16ClN5·C3H7NO, was prepared by reaction of p-toluidine with 2,4,6-trichloro-1,3,5-triazine at room temperature. The dihedral angles between the triazine ring and the pendant rings are 3.61 (12) and 53.11 (12)°. An intra­molecular C—H(...)N inter­action occurs. The packing is stabilized by N—H(...)N and N—H(...)O hydrogen bonds and C—H(...)π and π–π [centroid–centroid distance = 3.763 (1) Å] inter­actions.

Related literature

For the use of 1,3,5-triazine derivatives as starting materials for drugs and as light stabilisers, see: Azev et al. (2003 [triangle]); Steffensen and Simanek (2003 [triangle]). For related structures, see: Zeng et al. (2005a [triangle],b [triangle]); Jian et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3212-scheme1.jpg

Experimental

Crystal data

  • C17H16ClN5·C3H7NO
  • M r = 398.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3212-efi1.jpg
  • a = 6.821 (2) Å
  • b = 10.980 (2) Å
  • c = 14.060 (3) Å
  • α = 91.13 (3)°
  • β = 94.29 (2)°
  • γ = 98.32 (4)°
  • V = 1038.4 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 295 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 5740 measured reflections
  • 3832 independent reflections
  • 2786 reflections with I > 2σ(I)
  • R int = 0.016
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.146
  • S = 1.02
  • 3832 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049885/hg2590sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049885/hg2590Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Natural Science Foundation of Shandong Province (Nos. Y2006B08 and Z2007B01).

supplementary crystallographic information

Comment

1,3,5-Triazine derivatives are of great interest due to their importance as starting materials for drugs and light stabilizers (Azev et al., 2003; Steffensen & Simanek, 2003; Zeng et al., 2005a). Our group has reported the structure of 1,3,5-triazine derivative (Jian et al., 2007). Herein, we report the synthesis and structure of the title compound.

The crystal structure consists of the host 1,3,5-triazine derivative and a guest DMF solvate molecule. The bond lengths and angles are agreement with those found in similar compounds (Zeng et al., 2005b; Jian et al., 2007). The dihedral angles formed by triazine ring and two phenyl ring are 3.61, 53.11° for C2—C7 and C9—C14, respectively. They are compared to those found in the compound that reported by our group before (Jian et al., 2007). The dihedral angle between two phenyl ring is 51.61 (2)° which is larger than that of 35.8 (1)° found in aforementioned compound.

It is interesting that there exists C—H···π and π–π interactions in the lattice [C1···Cg1=3.653 (4) Å, C1—H1D···Cg1=145.1 (1)°, Cg1···Cg2=3.763 (1) Å,Cg1 and Cg2 refer to phenyl ring C2—C7 and triazine ring, respectively]. In addition there exists N—H···O, N—H···N, C—H···N and C—H···O intra and intermolecular hydrogen bond interactions (see Table 1). All the above interactions stabilize the whole structure.

Experimental

The title compound was synthesized by the reaction of 2,4,6-trichloro-1,3,5-triazine (0.02 mol) and p-toluidine (0.04 mol) in acetone solvate (50 ml) under stirring for 5 h at room temperature. Single crystals suitable for x-ray measurements were obtained by recrystallization from DMF at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.96 Å, N—H distance = 0.86Å and with Uiso = 1.2–1.5Ueq.

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C17H16ClN5·C3H7NOZ = 2
Mr = 398.89F(000) = 420
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.821 (2) ÅCell parameters from 25 reflections
b = 10.980 (2) Åθ = 4–14°
c = 14.060 (3) ŵ = 0.21 mm1
α = 91.13 (3)°T = 295 K
β = 94.29 (2)°Block, colorless
γ = 98.32 (4)°0.25 × 0.20 × 0.18 mm
V = 1038.4 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.9°
graphiteh = −8→8
ω scansk = −9→13
5740 measured reflectionsl = −17→16
3832 independent reflections3 standard reflections every 100 reflections
2786 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.146w = 1/[σ2(Fo2) + (0.0677P)2 + 0.4334P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3832 reflectionsΔρmax = 0.44 e Å3
254 parametersΔρmin = −0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.01901 (10)0.18643 (6)0.38436 (5)0.0657 (3)
N10.4183 (3)0.28803 (18)0.21951 (15)0.0525 (5)
H1A0.41890.21550.19540.063*
N20.7855 (3)0.58018 (17)0.42644 (15)0.0493 (5)
H2A0.88730.59600.46710.059*
N30.5954 (3)0.44126 (17)0.32082 (13)0.0455 (5)
N40.7002 (3)0.24467 (17)0.29872 (14)0.0499 (5)
N50.8869 (3)0.39225 (17)0.40810 (14)0.0448 (5)
C1−0.2699 (4)0.4869 (3)0.0743 (2)0.0787 (9)
H1B−0.26990.56830.10060.118*
H1C−0.38620.43410.09100.118*
H1D−0.27030.49000.00610.118*
C2−0.0867 (4)0.4374 (3)0.11384 (19)0.0598 (7)
C30.0514 (4)0.5047 (3)0.1770 (2)0.0669 (8)
H3A0.03130.58320.19620.080*
C40.2206 (4)0.4597 (2)0.2135 (2)0.0634 (7)
H4A0.31140.50810.25630.076*
C50.2546 (3)0.3441 (2)0.18675 (17)0.0481 (6)
C60.1171 (4)0.2758 (3)0.1229 (2)0.0639 (7)
H6A0.13730.19750.10340.077*
C7−0.0501 (4)0.3218 (3)0.0875 (2)0.0706 (8)
H7A−0.14090.27350.04460.085*
C80.3217 (5)0.9718 (3)0.3723 (2)0.0756 (9)
H8A0.40721.04520.35730.113*
H8B0.26180.98570.43040.113*
H8C0.21970.95120.32140.113*
C90.4419 (4)0.8673 (2)0.38440 (18)0.0528 (6)
C100.6424 (4)0.8851 (2)0.3756 (2)0.0600 (7)
H10A0.70520.96280.36120.072*
C110.7532 (4)0.7902 (2)0.3877 (2)0.0561 (7)
H11A0.88890.80430.38040.067*
C120.6654 (3)0.6753 (2)0.41038 (16)0.0437 (5)
C130.4652 (3)0.6554 (2)0.41948 (19)0.0516 (6)
H13A0.40280.57780.43420.062*
C140.3564 (4)0.7512 (2)0.4066 (2)0.0575 (7)
H14A0.22040.73670.41320.069*
C150.7526 (3)0.4684 (2)0.38338 (16)0.0417 (5)
C160.5731 (3)0.3278 (2)0.28167 (16)0.0454 (5)
C170.8473 (3)0.2861 (2)0.36048 (17)0.0458 (5)
O10.4123 (5)0.0448 (2)0.1300 (2)0.1152 (10)
N60.6354 (6)−0.0890 (3)0.1270 (2)0.0983 (10)
C180.5910 (8)0.0213 (4)0.1365 (3)0.1098 (14)
H18A0.69400.08640.14840.132*
C190.8451 (8)−0.1067 (5)0.1350 (4)0.1468 (19)
H19A0.9276−0.02830.14520.220*
H19B0.8761−0.14520.07720.220*
H19C0.8689−0.15820.18780.220*
C200.4959 (8)−0.1957 (4)0.1119 (4)0.168 (3)
H20A0.3643−0.17390.10770.252*
H20B0.5103−0.24970.16400.252*
H20C0.5176−0.23670.05350.252*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0605 (4)0.0572 (4)0.0833 (5)0.0336 (3)−0.0152 (3)−0.0046 (3)
N10.0481 (11)0.0474 (11)0.0608 (13)0.0129 (9)−0.0134 (10)−0.0071 (9)
N20.0414 (10)0.0435 (11)0.0627 (13)0.0158 (8)−0.0145 (9)−0.0046 (9)
N30.0401 (10)0.0470 (11)0.0500 (11)0.0144 (8)−0.0077 (8)−0.0011 (9)
N40.0499 (11)0.0467 (11)0.0547 (12)0.0185 (9)−0.0073 (9)−0.0018 (9)
N50.0382 (10)0.0454 (11)0.0525 (11)0.0159 (8)−0.0046 (8)0.0008 (9)
C10.0460 (15)0.104 (2)0.088 (2)0.0215 (15)−0.0084 (14)0.0248 (18)
C20.0411 (14)0.0794 (19)0.0597 (16)0.0121 (13)−0.0018 (12)0.0200 (14)
C30.0584 (16)0.0703 (18)0.0745 (19)0.0263 (14)−0.0100 (14)−0.0014 (14)
C40.0524 (15)0.0630 (16)0.0737 (18)0.0198 (12)−0.0215 (13)−0.0087 (13)
C50.0402 (12)0.0550 (14)0.0486 (13)0.0098 (10)−0.0051 (10)0.0043 (11)
C60.0561 (16)0.0622 (16)0.0702 (18)0.0093 (13)−0.0158 (13)−0.0013 (13)
C70.0514 (16)0.078 (2)0.076 (2)0.0039 (14)−0.0219 (14)0.0047 (15)
C80.0744 (19)0.0564 (16)0.102 (2)0.0328 (14)−0.0008 (17)0.0082 (15)
C90.0532 (14)0.0456 (13)0.0621 (16)0.0195 (11)−0.0026 (12)0.0029 (11)
C100.0544 (15)0.0403 (13)0.0832 (19)0.0050 (11)−0.0071 (13)0.0090 (12)
C110.0362 (12)0.0514 (14)0.0801 (18)0.0088 (10)−0.0053 (12)0.0038 (12)
C120.0410 (12)0.0413 (12)0.0499 (13)0.0146 (9)−0.0064 (10)−0.0004 (10)
C130.0437 (13)0.0444 (13)0.0686 (16)0.0110 (10)0.0067 (11)0.0083 (11)
C140.0425 (13)0.0582 (15)0.0762 (18)0.0186 (11)0.0098 (12)0.0092 (13)
C150.0361 (11)0.0441 (12)0.0465 (13)0.0128 (9)−0.0003 (9)0.0032 (10)
C160.0423 (12)0.0470 (13)0.0480 (13)0.0139 (10)−0.0027 (10)0.0024 (10)
C170.0425 (12)0.0469 (13)0.0505 (14)0.0174 (10)−0.0013 (10)0.0033 (10)
O10.145 (3)0.0866 (18)0.118 (2)0.0498 (18)−0.0214 (19)−0.0214 (15)
N60.139 (3)0.082 (2)0.0782 (19)0.0462 (19)−0.0147 (18)−0.0233 (15)
C180.160 (4)0.078 (3)0.089 (3)0.018 (3)−0.007 (3)−0.014 (2)
C190.138 (4)0.179 (5)0.135 (4)0.067 (4)0.008 (3)−0.026 (4)
C200.182 (5)0.097 (3)0.208 (6)0.013 (4)−0.058 (5)−0.063 (4)

Geometric parameters (Å, °)

C17—Cl11.734 (2)C11—C121.370 (3)
N1—H1A0.8600C11—H11A0.9300
N2—H2A0.8600C12—C131.367 (3)
C1—H1B0.9600C12—N21.430 (3)
C1—H1C0.9600C13—C141.380 (3)
C1—H1D0.9600C13—H13A0.9300
C2—C31.368 (4)C14—H14A0.9300
C2—C71.377 (4)C15—N31.329 (3)
C2—C11.507 (3)C15—N21.339 (3)
C3—C41.387 (3)C15—N51.358 (3)
C3—H3A0.9300C16—N11.335 (3)
C4—C51.373 (3)C16—N31.336 (3)
C4—H4A0.9300C16—N41.359 (3)
C5—C61.375 (3)C17—N41.300 (3)
C5—N11.403 (3)C17—N51.315 (3)
C6—C71.376 (4)O1—C181.279 (5)
C6—H6A0.9300N6—C181.297 (5)
C7—H7A0.9300N6—C201.400 (5)
C8—C91.509 (3)N6—C191.468 (5)
C8—H8A0.9600C18—H18A0.9300
C8—H8B0.9600C19—H19A0.9600
C8—H8C0.9600C19—H19B0.9600
C9—C101.369 (4)C19—H19C0.9600
C9—C141.375 (4)C20—H20A0.9600
C10—C111.379 (3)C20—H20B0.9600
C10—H10A0.9300C20—H20C0.9600
N4—C17—Cl1115.32 (17)C13—C12—N2121.5 (2)
N5—C17—Cl1114.56 (17)C11—C12—N2119.4 (2)
C2—C1—H1B109.5C12—C13—C14119.5 (2)
C2—C1—H1C109.5C12—C13—H13A120.2
H1B—C1—H1C109.5C14—C13—H13A120.2
C2—C1—H1D109.5C9—C14—C13122.3 (2)
H1B—C1—H1D109.5C9—C14—H14A118.8
H1C—C1—H1D109.5C13—C14—H14A118.8
C3—C2—C7116.7 (2)N3—C15—N2118.55 (19)
C3—C2—C1121.9 (3)N3—C15—N5125.7 (2)
C7—C2—C1121.4 (3)N2—C15—N5115.77 (19)
C2—C3—C4122.2 (3)N1—C16—N3120.5 (2)
C2—C3—H3A118.9N1—C16—N4114.4 (2)
C4—C3—H3A118.9N3—C16—N4125.1 (2)
C5—C4—C3120.4 (3)N4—C17—N5130.1 (2)
C5—C4—H4A119.8C16—N1—C5131.2 (2)
C3—C4—H4A119.8C16—N1—H1A114.4
C4—C5—C6117.9 (2)C5—N1—H1A114.4
C4—C5—N1125.7 (2)C15—N2—C12125.31 (18)
C6—C5—N1116.4 (2)C15—N2—H2A117.3
C5—C6—C7120.9 (3)C12—N2—H2A117.3
C5—C6—H6A119.5C15—N3—C16114.60 (19)
C7—C6—H6A119.5C17—N4—C16112.54 (19)
C6—C7—C2121.9 (3)C17—N5—C15111.89 (19)
C6—C7—H7A119.1C18—N6—C20124.6 (4)
C2—C7—H7A119.1C18—N6—C19119.1 (4)
C9—C8—H8A109.5C20—N6—C19116.2 (4)
C9—C8—H8B109.5O1—C18—N6123.1 (4)
H8A—C8—H8B109.5O1—C18—H18A118.5
C9—C8—H8C109.5N6—C18—H18A118.5
H8A—C8—H8C109.5N6—C19—H19A109.5
H8B—C8—H8C109.5N6—C19—H19B109.5
C10—C9—C14117.1 (2)H19A—C19—H19B109.5
C10—C9—C8121.1 (2)N6—C19—H19C109.5
C14—C9—C8121.8 (2)H19A—C19—H19C109.5
C9—C10—C11121.3 (2)H19B—C19—H19C109.5
C9—C10—H10A119.4N6—C20—H20A109.5
C11—C10—H10A119.4N6—C20—H20B109.5
C12—C11—C10120.7 (2)H20A—C20—H20B109.5
C12—C11—H11A119.7N6—C20—H20C109.5
C10—C11—H11A119.7H20A—C20—H20C109.5
C13—C12—C11119.1 (2)H20B—C20—H20C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.062.923 (3)177
N2—H2A···N5i0.862.243.081 (3)168
C4—H4A···N30.932.302.905 (3)122
C20—H20A···O10.962.392.792 (5)105
C1—H1D···Cg1ii0.962.863.653 (4)145

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2590).

References

  • Azev, Y. A., Dulcks, T. & Gabel, D. (2003). Tetrahedron Lett. 44, 8689–8691.
  • Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
  • Jian, F.-F., Wei, Y.-X., Huang, L.-H. & Ren, X.-Y. (2007). Acta Cryst. E63, o4937.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steffensen, M. B. & Simanek, E. E. (2003). Org. Lett. 5, 2359–2361. [PubMed]
  • Zeng, T., Dong, C.-M. & Shu, X.-G. (2005a). Acta Cryst. E61, o2334–o2335.
  • Zeng, T., Dong, C.-M., Shu, X.-G., Li, J.-S. & Huang, P.-M. (2005b). Acta Cryst. E61, o2211–o2212.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography