PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3124.
Published online 2009 November 21. doi:  10.1107/S1600536809048557
PMCID: PMC2972000

2-C-Cyclo­hexyl-2,3-O-isopropyl­idene­erythrofuran­ose

Abstract

In the title compound, C13H22O4, the acetonide ring adopts an envelope conformation with one of the O atoms as the flap atom, whereas a twisted conformation is found for the furan­ose ring. Centrosymmetric eight-membered {(...)OCOH}2 synthons involving the hydr­oxy H and acetonide O atoms are found in the crystal structure. These are linked into a supra­molecular chain in the a-axis direction via C—H(...)O contacts.

Related literature

For the dihydroxy­lation of the olefin portion of 1,2-dioxines, see: Robinson et al. (2006 [triangle], 2009 [triangle]); Valente et al. (2009 [triangle]); Pedersen et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3124-scheme1.jpg

Experimental

Crystal data

  • C13H22O4
  • M r = 242.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3124-efi1.jpg
  • a = 5.454 (3) Å
  • b = 9.908 (3) Å
  • c = 12.442 (5) Å
  • α = 93.29 (3)°
  • β = 94.95 (4)°
  • γ = 102.94 (3)°
  • V = 650.8 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 153 K
  • 0.24 × 0.15 × 0.13 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.789, T max = 1
  • 4992 measured reflections
  • 2224 independent reflections
  • 2064 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.124
  • S = 1.09
  • 2224 reflections
  • 156 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048557/hg2594sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048557/hg2594Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

supplementary crystallographic information

Comment

Recently we examined the dihydroxylation of the olefin portion of 1,2-dioxines, which provided access to a range of polyhydroxylated core structures upon selective manipulation of the peroxide linkage (Robinson et al., 2006; Robinson et al., 2009; Valente et al., 2009). This methodology was extended to include the synthesis of erythrono-γ-lactones (Pedersen et al., 2009), during the course of which the title compound, (I), was prepared.

The molecular structure of (I), Fig. 1, comprises two fused five-membered rings linked by the C2—C3 bond. The acetonide ring adopts an envelope conformation with the O2 atom being the flap atom. A twisted conformation is found for the furanose ring whereby the O3 atom is endo and the C4 atom is exo. The cyclohexyl group is in the chair conformation. The crystal structure comprises centrosymmetric dimers held by {···OCOH}2 synthons arising from the interaction between the O4-hydroxyl group and the ether-O3 atom, Fig. 2 and Table 1. The resultant eight-membered ring has an elongated chair conformation. The dimeric aggregates are linked into supramolecular chains via C—H···O interactions, Fig. 2 and Table 1. The topology of the supramolecular chain is linear, and is aligned along the a direction.

Experimental

For full synthetic procedures and characterization data see Pedersen et al. (2009) and Robinson et al. (2009). To a stirred solution of Co(salen)2 (27 mg, 0.08 mmol) in THF (5 ml) at ambient temperature was added (3aR,7aS)-3a-cyclohexyl-tetrahydro-2,2-dimethyl-[1,3]dioxolo[4,5-d][1,2]dioxine (803 mg, 3.31 mmol). The reaction left to stir until complete by TLC (~16 h). All volatiles were removed in vacuo giving a crude mixture of regioisomers in a 43:57 ratio. The isomers were completely separated by flash chromatography giving a combined total yield of 779 mg (97%). Compound (I) was isolated as a colourless solid (337 mg), and the pure material was recrystallized by slowly evaporating a 1:1 mixture of dichloromethane/heptane to give colourless prisms, m. pt. 391–394 K. The compound was found to exist solely in its cyclic hemi-acetal form(s) both as a solid indicated by IR (absence of carbonyl signal), and in CDCl3 solution which revealed a 94:6 anomeric ratio.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.98–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular chain formation along the a axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines) and C—H···O contacts (blue dashed lines).

Crystal data

C13H22O4Z = 2
Mr = 242.31F(000) = 264
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.454 (3) ÅCell parameters from 657 reflections
b = 9.908 (3) Åθ = 2.1–30.2°
c = 12.442 (5) ŵ = 0.09 mm1
α = 93.29 (3)°T = 153 K
β = 94.95 (4)°Needle, colourless
γ = 102.94 (3)°0.24 × 0.15 × 0.13 mm
V = 650.8 (5) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer2224 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −6→5
Tmin = 0.789, Tmax = 1k = −11→11
4992 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.066P)2 + 0.1734P] where P = (Fo2 + 2Fc2)/3
2224 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.69690 (18)0.26256 (11)0.70713 (8)0.0281 (3)
O21.0523 (2)0.34466 (12)0.62499 (9)0.0352 (3)
O30.9937 (2)0.48884 (11)0.85907 (9)0.0377 (3)
O41.0310 (3)0.31604 (12)0.97416 (9)0.0439 (4)
H4O1.02810.37031.02820.066*
C10.7854 (3)0.33328 (17)0.61509 (12)0.0312 (4)
C21.1367 (3)0.33878 (16)0.73567 (13)0.0320 (4)
H21.27830.28980.74250.038*
C30.9031 (3)0.25734 (15)0.78511 (12)0.0270 (4)
C40.8885 (3)0.35109 (16)0.88634 (12)0.0327 (4)
H40.70880.34150.90190.039*
C51.2089 (3)0.47939 (18)0.80110 (15)0.0410 (4)
H5A1.36090.48530.85240.049*
H5B1.24500.55560.75260.049*
C60.7237 (3)0.47484 (18)0.61632 (14)0.0366 (4)
H6A0.53970.46370.60850.055*
H6B0.79590.52430.55620.055*
H6C0.79540.52820.68500.055*
C70.6697 (4)0.2440 (2)0.51267 (14)0.0446 (5)
H7A0.48500.22780.50850.067*
H7B0.71930.15490.51340.067*
H7C0.72990.29160.44970.067*
C80.9010 (3)0.10690 (15)0.80714 (12)0.0281 (4)
H81.04540.10860.86290.034*
C90.9368 (3)0.01889 (16)0.70736 (14)0.0353 (4)
H9A0.79680.01590.65040.042*
H9B1.09730.06230.67880.042*
C100.9421 (3)−0.12889 (17)0.73441 (16)0.0410 (4)
H10A0.9581−0.18440.66770.049*
H10B1.0915−0.12650.78630.049*
C110.7028 (3)−0.19803 (17)0.78331 (14)0.0363 (4)
H11A0.5557−0.21170.72800.044*
H11B0.7179−0.29050.80530.044*
C120.6588 (3)−0.11062 (17)0.88099 (14)0.0376 (4)
H12A0.7936−0.10830.94020.045*
H12B0.4948−0.15390.90670.045*
C130.6576 (3)0.03762 (17)0.85399 (13)0.0343 (4)
H13A0.63910.09290.92040.041*
H13B0.51070.03610.80100.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0218 (5)0.0379 (6)0.0252 (6)0.0082 (4)0.0014 (4)0.0048 (4)
O20.0277 (6)0.0454 (7)0.0345 (6)0.0098 (5)0.0089 (5)0.0062 (5)
O30.0485 (7)0.0307 (6)0.0335 (7)0.0112 (5)−0.0019 (5)−0.0002 (5)
O40.0662 (8)0.0383 (7)0.0279 (6)0.0212 (6)−0.0115 (6)−0.0033 (5)
C10.0266 (8)0.0414 (9)0.0262 (8)0.0078 (6)0.0047 (6)0.0051 (6)
C20.0240 (8)0.0352 (8)0.0373 (9)0.0082 (6)0.0009 (6)0.0041 (7)
C30.0234 (7)0.0332 (8)0.0250 (8)0.0095 (6)−0.0009 (6)−0.0001 (6)
C40.0413 (9)0.0312 (8)0.0264 (8)0.0125 (7)−0.0015 (7)0.0008 (6)
C50.0334 (9)0.0370 (9)0.0483 (10)0.0027 (7)−0.0044 (7)0.0023 (8)
C60.0343 (9)0.0440 (10)0.0337 (9)0.0121 (7)0.0037 (7)0.0100 (7)
C70.0490 (11)0.0548 (11)0.0272 (9)0.0082 (8)−0.0003 (8)0.0005 (8)
C80.0260 (8)0.0313 (8)0.0272 (8)0.0084 (6)0.0005 (6)0.0000 (6)
C90.0347 (9)0.0351 (9)0.0373 (9)0.0079 (7)0.0124 (7)−0.0006 (7)
C100.0407 (10)0.0329 (9)0.0506 (11)0.0097 (7)0.0137 (8)−0.0047 (7)
C110.0380 (9)0.0314 (8)0.0378 (9)0.0050 (7)0.0042 (7)−0.0006 (7)
C120.0432 (10)0.0365 (9)0.0340 (9)0.0088 (7)0.0070 (7)0.0061 (7)
C130.0369 (9)0.0369 (9)0.0319 (9)0.0119 (7)0.0107 (7)0.0027 (7)

Geometric parameters (Å, °)

O1—C31.4328 (18)C7—H7A0.9800
O1—C11.4392 (19)C7—H7B0.9800
O2—C21.423 (2)C7—H7C0.9800
O2—C11.429 (2)C8—C91.528 (2)
O3—C41.429 (2)C8—C131.531 (2)
O3—C51.447 (2)C8—H81.0000
O4—C41.392 (2)C9—C101.527 (2)
O4—H4O0.8399C9—H9A0.9900
C1—C71.512 (2)C9—H9B0.9900
C1—C61.513 (2)C10—C111.526 (2)
C2—C51.526 (2)C10—H10A0.9900
C2—C31.544 (2)C10—H10B0.9900
C2—H21.0000C11—C121.519 (2)
C3—C81.529 (2)C11—H11A0.9900
C3—C41.540 (2)C11—H11B0.9900
C4—H41.0000C12—C131.527 (2)
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C6—H6A0.9800C13—H13A0.9900
C6—H6B0.9800C13—H13B0.9900
C6—H6C0.9800
C3—O1—C1111.24 (11)C1—C7—H7B109.5
C2—O2—C1108.79 (12)H7A—C7—H7B109.5
C4—O3—C5105.95 (12)C1—C7—H7C109.5
C4—O4—H4O108.8H7A—C7—H7C109.5
O2—C1—O1105.26 (12)H7B—C7—H7C109.5
O2—C1—C7108.62 (14)C9—C8—C3113.25 (13)
O1—C1—C7109.15 (13)C9—C8—C13109.62 (13)
O2—C1—C6111.35 (13)C3—C8—C13111.20 (12)
O1—C1—C6110.47 (13)C9—C8—H8107.5
C7—C1—C6111.76 (14)C3—C8—H8107.5
O2—C2—C5114.39 (14)C13—C8—H8107.5
O2—C2—C3104.95 (12)C10—C9—C8111.22 (14)
C5—C2—C3104.74 (13)C10—C9—H9A109.4
O2—C2—H2110.8C8—C9—H9A109.4
C5—C2—H2110.8C10—C9—H9B109.4
C3—C2—H2110.8C8—C9—H9B109.4
O1—C3—C8110.40 (12)H9A—C9—H9B108.0
O1—C3—C4108.10 (12)C11—C10—C9111.32 (14)
C8—C3—C4114.24 (13)C11—C10—H10A109.4
O1—C3—C2103.39 (12)C9—C10—H10A109.4
C8—C3—C2116.55 (12)C11—C10—H10B109.4
C4—C3—C2103.27 (12)C9—C10—H10B109.4
O4—C4—O3111.08 (13)H10A—C10—H10B108.0
O4—C4—C3109.45 (12)C12—C11—C10111.32 (14)
O3—C4—C3104.59 (13)C12—C11—H11A109.4
O4—C4—H4110.5C10—C11—H11A109.4
O3—C4—H4110.5C12—C11—H11B109.4
C3—C4—H4110.5C10—C11—H11B109.4
O3—C5—C2106.01 (13)H11A—C11—H11B108.0
O3—C5—H5A110.5C11—C12—C13111.60 (14)
C2—C5—H5A110.5C11—C12—H12A109.3
O3—C5—H5B110.5C13—C12—H12A109.3
C2—C5—H5B110.5C11—C12—H12B109.3
H5A—C5—H5B108.7C13—C12—H12B109.3
C1—C6—H6A109.5H12A—C12—H12B108.0
C1—C6—H6B109.5C12—C13—C8111.60 (13)
H6A—C6—H6B109.5C12—C13—H13A109.3
C1—C6—H6C109.5C8—C13—H13A109.3
H6A—C6—H6C109.5C12—C13—H13B109.3
H6B—C6—H6C109.5C8—C13—H13B109.3
C1—C7—H7A109.5H13A—C13—H13B108.0
C2—O2—C1—O1−24.16 (15)C2—C3—C4—O4−89.45 (15)
C2—O2—C1—C7−140.95 (13)O1—C3—C4—O3−79.48 (14)
C2—O2—C1—C695.56 (15)C8—C3—C4—O3157.20 (12)
C3—O1—C1—O212.78 (15)C2—C3—C4—O329.63 (14)
C3—O1—C1—C7129.21 (14)C4—O3—C5—C234.96 (16)
C3—O1—C1—C6−107.53 (14)O2—C2—C5—O399.37 (16)
C1—O2—C2—C5−88.63 (16)C3—C2—C5—O3−14.97 (16)
C1—O2—C2—C325.58 (15)O1—C3—C8—C962.51 (16)
C1—O1—C3—C8−122.93 (13)C4—C3—C8—C9−175.42 (12)
C1—O1—C3—C4111.46 (14)C2—C3—C8—C9−55.00 (17)
C1—O1—C3—C22.43 (14)O1—C3—C8—C13−61.44 (16)
O2—C2—C3—O1−16.78 (14)C4—C3—C8—C1360.62 (17)
C5—C2—C3—O1104.03 (13)C2—C3—C8—C13−178.95 (12)
O2—C2—C3—C8104.51 (14)C3—C8—C9—C10178.09 (12)
C5—C2—C3—C8−134.68 (14)C13—C8—C9—C10−57.09 (17)
O2—C2—C3—C4−129.38 (12)C8—C9—C10—C1156.64 (19)
C5—C2—C3—C4−8.57 (15)C9—C10—C11—C12−54.5 (2)
C5—O3—C4—O477.45 (16)C10—C11—C12—C1353.94 (19)
C5—O3—C4—C3−40.52 (15)C11—C12—C13—C8−55.52 (18)
O1—C3—C4—O4161.44 (12)C9—C8—C13—C1256.55 (17)
C8—C3—C4—O438.13 (18)C3—C8—C13—C12−177.46 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H40···O3i0.841.952.787 (2)173
C2—H2···O1ii1.002.433.350 (3)152

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2594).

References

  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403. [PubMed]
  • Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096. [PubMed]
  • Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography