PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3225.
Published online 2009 November 28. doi:  10.1107/S1600536809050089
PMCID: PMC2971996

N-(3,5-Dimethyl­phen­yl)benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C14H15NO2S, the mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 67.9 (2)°. The two benzene rings are tilted by 54.6 (1)° relative to each other. In the crystal, inter­molecular N—H(...)O hydrogen bonds pack the mol­ecules into a supra­molecular structure.

Related literature

For preparation of the title compound, see: Gowda et al. (2005 [triangle]). For our study of the effects of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008 [triangle]; 2009a [triangle],b [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3225-scheme1.jpg

Experimental

Crystal data

  • C14H15NO2S
  • M r = 261.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3225-efi1.jpg
  • a = 11.192 (1) Å
  • b = 7.3543 (7) Å
  • c = 16.672 (2) Å
  • β = 101.62 (1)°
  • V = 1344.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 299 K
  • 0.48 × 0.40 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.896, T max = 0.959
  • 5063 measured reflections
  • 2742 independent reflections
  • 2187 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.111
  • S = 1.05
  • 2742 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050089/bx2251sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050089/bx2251Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; 2009a,b), in the present work, the structure of N-(3,5-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of 67.9 (2)°, compared to the values of 71.0 (2)° in N-(2,3-dimethylphenyl)benzenesulfonamide (II)(Gowda et al., 2009a), 62.7 (2)° in N-(2,5-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2009b) and -78.7 (2)° in N-(2,6-dimethylphenyl)benzenesulfonamide (IV)(Gowda et al., 2008). The two benzene rings in (I) are tilted relative to each other by 54.6 (1)°, compared to the values of 64.8 (1)° in (II), 40.4 (1)° in (III) and 44.9 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 3,5-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3,5-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH was located in difference map and its positional parameters were refined freely [N—H = 0.81 (2) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H15NO2SF(000) = 552
Mr = 261.33Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.192 (1) Åθ = 2.5–27.8°
b = 7.3543 (7) ŵ = 0.23 mm1
c = 16.672 (2) ÅT = 299 K
β = 101.62 (1)°Prism, colourless
V = 1344.1 (2) Å30.48 × 0.40 × 0.18 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2742 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
graphiteRint = 0.015
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −13→13
Tmin = 0.896, Tmax = 0.959k = −6→9
5063 measured reflectionsl = −9→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111w = 1/[σ2(Fo2) + (0.0575P)2 + 0.3783P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
2742 reflectionsΔρmax = 0.31 e Å3
169 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (18)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.41245 (16)0.1889 (3)0.59746 (11)0.0434 (4)
C20.52681 (19)0.2478 (3)0.59053 (14)0.0618 (6)
H20.58730.26680.63690.074*
C30.5495 (3)0.2780 (4)0.51321 (17)0.0816 (8)
H30.62660.31610.50740.098*
C40.4597 (3)0.2524 (4)0.44490 (15)0.0790 (8)
H40.47640.27160.39310.095*
C50.3458 (3)0.1986 (4)0.45274 (14)0.0805 (8)
H50.28460.18460.40630.097*
C60.3209 (2)0.1650 (3)0.52926 (13)0.0620 (6)
H60.24380.12680.53470.074*
C70.20322 (14)0.3865 (2)0.68610 (10)0.0354 (4)
C80.18940 (16)0.5491 (2)0.64340 (10)0.0410 (4)
H80.25780.61620.63810.049*
C90.07428 (18)0.6121 (3)0.60856 (12)0.0479 (5)
C10−0.02579 (17)0.5069 (3)0.61670 (12)0.0514 (5)
H10−0.10350.54770.59290.062*
C11−0.01416 (16)0.3444 (3)0.65873 (12)0.0489 (5)
C120.10215 (16)0.2850 (3)0.69465 (11)0.0430 (4)
H120.11220.17720.72440.052*
C130.0577 (2)0.7909 (3)0.56388 (16)0.0733 (7)
H13A0.13230.82390.54760.088*
H13B0.03640.88300.59930.088*
H13C−0.00630.77990.51620.088*
C14−0.12452 (19)0.2338 (4)0.66755 (16)0.0755 (7)
H14A−0.17170.20580.61420.091*
H14B−0.17350.30230.69780.091*
H14C−0.09850.12290.69620.091*
N10.32271 (13)0.3272 (2)0.72571 (9)0.0395 (4)
H1N0.3739 (18)0.406 (3)0.7338 (12)0.047*
O10.49861 (12)0.12569 (19)0.75071 (8)0.0526 (4)
O20.29563 (13)0.00239 (19)0.68847 (10)0.0590 (4)
S10.38310 (4)0.14444 (6)0.69537 (3)0.04071 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0437 (10)0.0417 (10)0.0431 (9)0.0098 (8)0.0043 (8)−0.0040 (8)
C20.0500 (12)0.0781 (15)0.0577 (13)0.0046 (11)0.0119 (10)0.0035 (11)
C30.0782 (18)0.100 (2)0.0758 (17)0.0074 (16)0.0366 (14)0.0110 (16)
C40.110 (2)0.0806 (18)0.0512 (14)0.0199 (16)0.0283 (15)0.0035 (12)
C50.104 (2)0.0826 (18)0.0466 (13)0.0137 (16)−0.0035 (13)−0.0090 (12)
C60.0616 (14)0.0681 (14)0.0509 (12)0.0016 (11)−0.0019 (10)−0.0081 (10)
C70.0323 (8)0.0407 (9)0.0330 (8)0.0014 (7)0.0063 (6)−0.0033 (7)
C80.0411 (9)0.0395 (9)0.0419 (9)−0.0038 (8)0.0074 (7)−0.0010 (7)
C90.0507 (11)0.0427 (10)0.0458 (10)0.0040 (8)−0.0008 (8)−0.0007 (8)
C100.0365 (10)0.0596 (12)0.0539 (11)0.0079 (9)−0.0012 (8)−0.0014 (10)
C110.0354 (9)0.0621 (12)0.0495 (11)−0.0036 (8)0.0093 (8)0.0006 (9)
C120.0393 (9)0.0463 (10)0.0441 (10)−0.0018 (8)0.0101 (7)0.0058 (8)
C130.0773 (16)0.0504 (13)0.0804 (17)0.0035 (12)−0.0119 (13)0.0119 (12)
C140.0411 (12)0.100 (2)0.0858 (17)−0.0124 (12)0.0142 (11)0.0160 (15)
N10.0326 (8)0.0392 (8)0.0450 (8)−0.0012 (6)0.0038 (6)−0.0030 (6)
O10.0436 (7)0.0577 (8)0.0510 (7)0.0142 (6)−0.0032 (6)0.0062 (6)
O20.0556 (8)0.0410 (7)0.0798 (10)−0.0062 (6)0.0123 (7)−0.0002 (7)
S10.0367 (3)0.0373 (3)0.0457 (3)0.00433 (18)0.00246 (18)0.00225 (18)

Geometric parameters (Å, °)

C1—C21.378 (3)C9—C101.390 (3)
C1—C61.380 (3)C9—C131.505 (3)
C1—S11.7594 (19)C10—C111.378 (3)
C2—C31.381 (3)C10—H100.9300
C2—H20.9300C11—C121.389 (2)
C3—C41.372 (4)C11—C141.511 (3)
C3—H30.9300C12—H120.9300
C4—C51.366 (4)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.382 (3)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.384 (2)C14—H14C0.9600
C7—C121.386 (2)N1—S11.6302 (15)
C7—N11.435 (2)N1—H1N0.81 (2)
C8—C91.382 (2)O1—S11.4356 (13)
C8—H80.9300O2—S11.4204 (14)
C2—C1—C6121.3 (2)C9—C10—H10118.8
C2—C1—S1119.10 (15)C10—C11—C12118.44 (17)
C6—C1—S1119.64 (16)C10—C11—C14121.40 (19)
C1—C2—C3118.5 (2)C12—C11—C14120.15 (19)
C1—C2—H2120.7C7—C12—C11119.97 (17)
C3—C2—H2120.7C7—C12—H12120.0
C4—C3—C2120.7 (2)C11—C12—H12120.0
C4—C3—H3119.6C9—C13—H13A109.5
C2—C3—H3119.6C9—C13—H13B109.5
C5—C4—C3120.2 (2)H13A—C13—H13B109.5
C5—C4—H4119.9C9—C13—H13C109.5
C3—C4—H4119.9H13A—C13—H13C109.5
C4—C5—C6120.4 (2)H13B—C13—H13C109.5
C4—C5—H5119.8C11—C14—H14A109.5
C6—C5—H5119.8C11—C14—H14B109.5
C1—C6—C5118.9 (2)H14A—C14—H14B109.5
C1—C6—H6120.5C11—C14—H14C109.5
C5—C6—H6120.5H14A—C14—H14C109.5
C8—C7—C12120.60 (16)H14B—C14—H14C109.5
C8—C7—N1119.75 (15)C7—N1—S1120.92 (12)
C12—C7—N1119.56 (16)C7—N1—H1N115.0 (15)
C9—C8—C7120.24 (16)S1—N1—H1N108.7 (15)
C9—C8—H8119.9O2—S1—O1119.88 (9)
C7—C8—H8119.9O2—S1—N1108.03 (8)
C8—C9—C10118.28 (18)O1—S1—N1104.82 (8)
C8—C9—C13120.85 (19)O2—S1—C1108.42 (9)
C10—C9—C13120.87 (18)O1—S1—C1107.56 (9)
C11—C10—C9122.46 (17)N1—S1—C1107.53 (8)
C11—C10—H10118.8
C6—C1—C2—C3−1.8 (3)C8—C7—C12—C111.4 (3)
S1—C1—C2—C3178.45 (19)N1—C7—C12—C11177.90 (16)
C1—C2—C3—C40.9 (4)C10—C11—C12—C7−1.5 (3)
C2—C3—C4—C50.8 (4)C14—C11—C12—C7179.70 (19)
C3—C4—C5—C6−1.7 (4)C8—C7—N1—S1−114.44 (16)
C2—C1—C6—C50.9 (3)C12—C7—N1—S169.0 (2)
S1—C1—C6—C5−179.33 (19)C7—N1—S1—O2−48.89 (16)
C4—C5—C6—C10.9 (4)C7—N1—S1—O1−177.81 (13)
C12—C7—C8—C9−0.1 (3)C7—N1—S1—C167.93 (15)
N1—C7—C8—C9−176.67 (16)C2—C1—S1—O2−148.57 (17)
C7—C8—C9—C10−0.9 (3)C6—C1—S1—O231.65 (19)
C7—C8—C9—C13178.38 (19)C2—C1—S1—O1−17.56 (19)
C8—C9—C10—C110.7 (3)C6—C1—S1—O1162.66 (16)
C13—C9—C10—C11−178.5 (2)C2—C1—S1—N194.86 (17)
C9—C10—C11—C120.5 (3)C6—C1—S1—N1−84.93 (18)
C9—C10—C11—C14179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (2)2.14 (2)2.942 (2)176 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2251).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1691. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o366. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o2763. [PMC free article] [PubMed]
  • Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography