PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1665.
Published online 2009 November 25. doi:  10.1107/S1600536809049605
PMCID: PMC2971987

catena-Poly[[triaqua­(pyridine-κN)nickel(II)]-μ-sulfato-κ2 O:O′]

Abstract

The title compound, [Ni(SO4)(C5H5N)(H2O)3]n, was synthesized by the hydro­thermal reaction of NiSO4·6H2O, pyridine and water. The central NiII atom is coordinated in a distorted octa­hedral environment by a pyridine N atom, three aqua O atoms and two O atoms of bridging sulfate anions, yielding a zigzag chain. A three-dimensional network is generated via complex hydrogen bonds involving the sulfate and aqua ligands and a pyridine C—H group.

Related literature

For the structures of related nickel(II) complexes, see: Wang et al. (2006 [triangle]); Stein et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1665-scheme1.jpg

Experimental

Crystal data

  • [Ni(SO4)(C5H5N)(H2O)3]
  • M r = 287.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1665-efi1.jpg
  • a = 11.868 (3) Å
  • b = 7.5745 (14) Å
  • c = 11.420 (3) Å
  • β = 110.724 (4)°
  • V = 960.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.26 mm−1
  • T = 193 K
  • 0.30 × 0.20 × 0.14 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.465, T max = 0.729
  • 8854 measured reflections
  • 1746 independent reflections
  • 1641 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.110
  • S = 1.16
  • 1746 reflections
  • 161 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: CrystalClear (Rigaku, 1999 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049605/pk2206sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049605/pk2206Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503), the Natural Science Foundation of Guangxi, China (Nos. 0991003, 0991012Z) and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engin­eering of Medicinal Resources (Ministry of Education of China) for financial support.

supplementary crystallographic information

Comment

The asymmetric unit contains one independent Ni atom, which is octahedrally coordinated by two sulfato anions, three aqua ligands and one pyridine molecule. The bond lengths and angles involving Ni—O(aqua), Ni—N are similar to those of other nickel-carboxylate coordination polymers with pyridine (Wang et al., 2006; Stein et al., 2007), with the Ni center displaying the typical distorted octahedral coordination, which can be viewed from the angles of N1—Ni1—O1 177.81 (10)°, N1—Ni1—O7 91.13 (11)°, O1—Ni1—O6 92.13 (9)°, O5—Ni1—O6 92.91 (10)° (Fig. 1). The SO42- dianion acts as a µ2 bridging ligand, linking two adjacent metal ions and generating a one-dimensional zigzag chain (Fig. 2). The aqua ligands, sulfato groups and C—H of pyridine form extensive hydrogen-bonding interactions (Table 1), resulting in a three-dimensional network (Fig. 3).

Experimental

Samples of NiSO4.6H2O (0.1 mmol) and pyridine (0.1 mmol) were placed in a thick-walled Pyrex tube (ca 20 cm long). After addition of H2O (1 ml), the tube was frozen with liquid nitrogen, evacuated under vacuum and sealed with a torch. The tube was heated at 110°C for 2 days and then was slowly cooled down to room temperature, and light-green block-shaped crystals were obtained. Yield: 35%.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C) (C—H = 0.95 Å). Water H positions were located in an electron-density difference map and refined freely.

Figures

Fig. 1.
The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of the one-dimensional chain structure that propagates along the b axis.
Fig. 3.
A packing diagram viewed approximately down the b axis.

Crystal data

[Ni(SO4)(C5H5N)(H2O)3]F(000) = 592
Mr = 287.92Dx = 1.992 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3550 reflections
a = 11.868 (3) Åθ = 3.1–25.3°
b = 7.5745 (14) ŵ = 2.26 mm1
c = 11.420 (3) ÅT = 193 K
β = 110.724 (4)°Block, light-green
V = 960.2 (3) Å30.30 × 0.20 × 0.14 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer1746 independent reflections
Radiation source: fine-focus sealed tube1641 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = −14→13
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −9→9
Tmin = 0.465, Tmax = 0.729l = −13→12
8854 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.16w = 1/[σ2(Fo2) + (0.0672P)2 + 0.4274P] where P = (Fo2 + 2Fc2)/3
1746 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = −0.84 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.65136 (3)0.59664 (5)0.21049 (4)0.0112 (2)
S10.37812 (7)0.51034 (10)0.20733 (7)0.0111 (2)
O10.4632 (2)0.5757 (3)0.1473 (2)0.0144 (5)
O20.3600 (2)0.3178 (3)0.1818 (2)0.0148 (5)
O30.2651 (2)0.6067 (3)0.1535 (2)0.0185 (6)
O40.4322 (2)0.5392 (3)0.3441 (2)0.0163 (5)
O50.6504 (2)0.3741 (3)0.1062 (2)0.0139 (5)
H5A0.626 (3)0.283 (3)0.128 (3)0.017 (10)*
H5B0.619 (4)0.381 (6)0.0300 (11)0.033 (13)*
O60.6708 (2)0.4525 (3)0.3691 (2)0.0165 (5)
H6A0.687 (4)0.3472 (19)0.367 (4)0.037 (13)*
H6B0.611 (2)0.435 (5)0.387 (4)0.028 (12)*
O70.6283 (2)0.7484 (3)0.0563 (2)0.0212 (6)
H7A0.632 (4)0.724 (5)−0.0120 (19)0.034 (12)*
H7B0.609 (4)0.850 (2)0.064 (4)0.031 (12)*
N10.8352 (3)0.6199 (4)0.2656 (3)0.0179 (7)
C10.9028 (3)0.6672 (5)0.3822 (3)0.0247 (8)
H10.86370.69500.43940.030*
C21.0269 (3)0.6774 (6)0.4232 (4)0.0325 (9)
H21.07180.71120.50690.039*
C31.0846 (3)0.6379 (6)0.3407 (4)0.0345 (10)
H31.16990.64410.36640.041*
C41.0165 (4)0.5894 (5)0.2207 (5)0.0331 (10)
H41.05390.56120.16200.040*
C50.8929 (3)0.5822 (5)0.1867 (4)0.0255 (9)
H5C0.84640.54900.10340.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0115 (3)0.0107 (3)0.0109 (3)−0.00030 (14)0.0035 (2)0.00009 (15)
S10.0122 (4)0.0103 (4)0.0114 (4)−0.0005 (3)0.0050 (3)−0.0009 (3)
O10.0123 (12)0.0198 (13)0.0129 (12)−0.0013 (9)0.0066 (10)0.0014 (9)
O20.0222 (13)0.0097 (12)0.0127 (11)−0.0012 (9)0.0064 (10)−0.0036 (10)
O30.0172 (13)0.0147 (13)0.0259 (14)0.0034 (9)0.0103 (11)0.0035 (10)
O40.0226 (13)0.0160 (12)0.0113 (12)−0.0048 (10)0.0071 (10)−0.0043 (10)
O50.0188 (13)0.0144 (12)0.0081 (12)−0.0028 (10)0.0042 (10)0.0010 (10)
O60.0158 (13)0.0135 (13)0.0198 (13)−0.0005 (11)0.0058 (10)0.0022 (11)
O70.0361 (15)0.0135 (14)0.0175 (14)0.0053 (11)0.0139 (12)0.0009 (11)
N10.0154 (15)0.0150 (15)0.0223 (16)−0.0002 (11)0.0053 (12)0.0016 (12)
C10.0198 (19)0.029 (2)0.0217 (19)−0.0036 (16)0.0025 (15)−0.0012 (17)
C20.020 (2)0.035 (2)0.033 (2)−0.0033 (17)−0.0025 (17)0.002 (2)
C30.0139 (19)0.028 (2)0.057 (3)−0.0045 (16)0.007 (2)0.004 (2)
C40.024 (2)0.028 (2)0.056 (3)−0.0004 (17)0.025 (2)0.002 (2)
C50.0198 (19)0.029 (2)0.030 (2)−0.0035 (15)0.0124 (17)−0.0038 (17)

Geometric parameters (Å, °)

Ni1—O72.039 (2)O6—H6B0.82 (3)
Ni1—N12.053 (3)O7—H7A0.82 (3)
Ni1—O62.056 (2)O7—H7B0.815 (10)
Ni1—O52.062 (2)N1—C11.337 (5)
Ni1—O12.096 (2)N1—C51.342 (5)
Ni1—O2i2.110 (2)C1—C21.380 (5)
S1—O31.458 (2)C1—H10.9500
S1—O41.479 (2)C2—C31.380 (6)
S1—O21.488 (2)C2—H20.9500
S1—O11.491 (2)C3—C41.372 (6)
O2—Ni1ii2.110 (2)C3—H30.9500
O5—H5A0.82 (3)C4—C51.379 (6)
O5—H5B0.818 (10)C4—H40.9500
O6—H6A0.821 (10)C5—H5C0.9500
O7—Ni1—N191.13 (11)H5A—O5—H5B108 (4)
O7—Ni1—O6177.36 (10)Ni1—O6—H6A117 (3)
N1—Ni1—O689.97 (11)Ni1—O6—H6B118 (3)
O7—Ni1—O589.45 (9)H6A—O6—H6B94 (4)
N1—Ni1—O592.04 (11)Ni1—O7—H7A131 (3)
O6—Ni1—O592.91 (10)Ni1—O7—H7B113 (3)
O7—Ni1—O186.80 (10)H7A—O7—H7B115 (4)
N1—Ni1—O1177.81 (10)C1—N1—C5117.1 (3)
O6—Ni1—O192.13 (9)C1—N1—Ni1121.8 (2)
O5—Ni1—O187.23 (9)C5—N1—Ni1121.1 (3)
O7—Ni1—O2i92.22 (9)N1—C1—C2123.1 (4)
N1—Ni1—O2i91.89 (10)N1—C1—H1118.5
O6—Ni1—O2i85.33 (9)C2—C1—H1118.5
O5—Ni1—O2i175.69 (9)C3—C2—C1118.9 (4)
O1—Ni1—O2i88.90 (9)C3—C2—H2120.5
O3—S1—O4111.21 (14)C1—C2—H2120.5
O3—S1—O2111.13 (13)C4—C3—C2118.8 (4)
O4—S1—O2109.26 (13)C4—C3—H3120.6
O3—S1—O1108.13 (14)C2—C3—H3120.6
O4—S1—O1108.95 (13)C3—C4—C5118.9 (4)
O2—S1—O1108.08 (12)C3—C4—H4120.6
S1—O1—Ni1132.76 (14)C5—C4—H4120.6
S1—O2—Ni1ii134.32 (13)N1—C5—C4123.2 (4)
Ni1—O5—H5A116 (3)N1—C5—H5C118.4
Ni1—O5—H5B118 (3)C4—C5—H5C118.4
O3—S1—O1—Ni1150.13 (18)O2i—Ni1—N1—C137.9 (3)
O4—S1—O1—Ni129.1 (2)O7—Ni1—N1—C5−52.1 (3)
O2—S1—O1—Ni1−89.5 (2)O6—Ni1—N1—C5130.3 (3)
O7—Ni1—O1—S1−167.8 (2)O5—Ni1—N1—C537.4 (3)
O6—Ni1—O1—S19.8 (2)O2i—Ni1—N1—C5−144.4 (3)
O5—Ni1—O1—S1102.64 (19)C5—N1—C1—C2−0.3 (5)
O2i—Ni1—O1—S1−75.47 (19)Ni1—N1—C1—C2177.5 (3)
O3—S1—O2—Ni1ii−103.2 (2)N1—C1—C2—C30.2 (6)
O4—S1—O2—Ni1ii19.9 (2)C1—C2—C3—C4−0.1 (6)
O1—S1—O2—Ni1ii138.29 (18)C2—C3—C4—C50.1 (6)
O7—Ni1—N1—C1130.2 (3)C1—N1—C5—C40.3 (5)
O6—Ni1—N1—C1−47.4 (3)Ni1—N1—C5—C4−177.5 (3)
O5—Ni1—N1—C1−140.3 (3)C3—C4—C5—N1−0.3 (6)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.82 (3)2.04 (3)2.849 (3)170 (4)
O5—H5A···S1ii0.82 (3)2.81 (2)3.571 (3)157 (3)
O5—H5B···O1iii0.82 (1)1.94 (1)2.753 (3)173 (4)
O5—H5B···S1iii0.82 (1)2.85 (2)3.584 (3)151 (4)
O6—H6A···O3ii0.82 (1)1.95 (1)2.764 (3)172 (4)
O6—H6A···S1ii0.82 (1)2.71 (2)3.458 (3)152 (4)
O6—H6B···O40.82 (3)2.15 (3)2.821 (3)139 (4)
O6—H6B···S10.82 (3)2.85 (4)3.336 (3)120 (3)
O7—H7A···O2iii0.82 (3)2.00 (3)2.817 (3)176 (4)
O7—H7A···S1iii0.82 (3)2.82 (2)3.571 (3)154 (4)
O7—H7B···O4i0.82 (1)1.94 (2)2.690 (3)153 (4)
O7—H7B···S1i0.82 (1)2.84 (4)3.372 (3)125 (4)
C4—H4···O3iv0.952.573.304 (5)135

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z; (i) −x+1, y+1/2, −z+1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2206).

References

  • Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC & Rigaku (2000). CrystalStructure. Rigaku/MSC, The Woodands, Texas, USA, and Rigaku Coporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stein, I., Speldrich, M., Schilder, H., Lueken, H. & Ruschewitz, U. (2007). Z. Anorg. Allg. Chem. 633, 1382–1390.
  • Wang, Y., Su, Z.-M., Hao, X.-R., Shao, K.-Z. & Zhao, Y.-H. (2006). Acta Cryst. E62, m322–m324.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography