PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3139.
Published online 2009 November 21. doi:  10.1107/S1600536809048685
PMCID: PMC2971985

3,5-Dimeth­oxy-N,N-bis­(2-pyridylmeth­yl)aniline

Abstract

In the title mol­ecule, C20H21N3O2, the benzene ring forms dihedral angles of 80.8 (1) and 83.5 (1)° with the two terminal pyridine rings. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into chains propagating in [001].

Related literature

For general background to organic ligand-based crystal mater­ials, see: Desiraju (2007 [triangle]); Moulton & Zaworotko (2001 [triangle]). For related structures, see: Frisch & Cahil (2008 [triangle]); Shattock et al. (2008 [triangle]); Shirman et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3139-scheme1.jpg

Experimental

Crystal data

  • C20H21N3O2
  • M r = 335.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3139-efi1.jpg
  • a = 15.630 (3) Å
  • b = 5.9562 (12) Å
  • c = 20.088 (4) Å
  • β = 111.55 (3)°
  • V = 1739.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 113 K
  • 0.27 × 0.25 × 0.20 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.978, T max = 0.983
  • 14749 measured reflections
  • 4106 independent reflections
  • 3258 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.113
  • S = 1.10
  • 4106 reflections
  • 228 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048685/cv2657sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048685/cv2657Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Binzhou Medical College for financial support (grant No. BY2007KJ13).

supplementary crystallographic information

Comment

In recent years, considerable research has been put into the design and elaboration of new organic ligand-based crystal materials because of their importance in supramolecular chemistry, materials science and solid-state chemistry (Desiraju, 2007; Moulton & Zaworotko, 2001). It is well known that the construction of such materials strongly depends on the nature of organic bridging units. In this regard, considerable attention has been devoted to the design of new functional N-heterocyclic organic bridging units. Among of them, pyridines are useful building blocks, which are frequently employed in the construction of some interesting metal-organic frameworks and organic crystals (Frisch & Cahil, 2008; Shattock et al., 2008; Shirman et al., 2008). Herein, we report a new pyridine compound which could be applied for the preparation of metal-organic and organic crystals.

In the title molecule, (I) (Fig. 1), two pyridine rings form dihedral angles of 80.8 (1) and 83.5 (1)°, respectively, with the central benzene ring. The intermolecular C—H···O interaction (Table 1) links adjacent molecules into chains along the direction [001].

Experimental

3,5-Dimethoxyaniline (73.9 mg, 0.6 mmol) and 5 N NaOH (0.8 ml) were added to the solution of 2-bromomethylprydine (0.525 g, 3.05 mmol) in 1 ml of water, the obtained mixture was stirred vigorously for 24 h at room temperature. Then the mixture was extracted with 15 ml of CH2Cl2 for three times and the combined organic layers were dried over anhydrous Na2SO4. The crude material was purified by column chromatography on silica gel eluting with petroleum ether/EtOAc (3/1, V/V) to afford the desired product as a yellow solid (0.12 g, 58%). 1H NMR (400 MHz, CDCl3): δ = 3.64 (s, 6H), 4.82 (s, 4H), 5.87 (s, 3H), 7.14 (t, J = 6.4 Hz, 2H), 7.29 (s, 2H), 7.64 (t, J = 7.6 Hz, 2H), 8.58 (d, J = 4.4 Hz, 2H).

Refinement

All H atoms were positioned geometrically (C—H 0.95 - 0.99 Å), and refined in the riding model approximation, with Uiso(H) = 1.2-1.5 Ueq(C) .

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Crystal data

C20H21N3O2F(000) = 712
Mr = 335.40Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4823 reflections
a = 15.630 (3) Åθ = 2.2–27.9°
b = 5.9562 (12) ŵ = 0.08 mm1
c = 20.088 (4) ÅT = 113 K
β = 111.55 (3)°Block, colourless
V = 1739.3 (6) Å30.27 × 0.25 × 0.20 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer4106 independent reflections
Radiation source: rotating anode3258 reflections with I > 2σ(I)
confocalRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and [var phi] scansh = −20→13
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −7→7
Tmin = 0.978, Tmax = 0.983l = −26→26
14749 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0655P)2] where P = (Fo2 + 2Fc2)/3
4106 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.46394 (5)0.69311 (15)0.32987 (5)0.0298 (2)
O20.67567 (5)0.25014 (13)0.51460 (4)0.0262 (2)
N10.79174 (6)0.85369 (16)0.41961 (5)0.0225 (2)
N20.76094 (6)1.11713 (16)0.24609 (5)0.0232 (2)
N30.98074 (6)0.69084 (17)0.58297 (5)0.0270 (2)
C10.56528 (7)0.47409 (19)0.42047 (6)0.0225 (2)
H10.51420.38820.42080.027*
C20.55351 (7)0.65475 (19)0.37374 (6)0.0223 (2)
C30.62677 (7)0.78159 (19)0.37172 (6)0.0215 (2)
H30.61680.90190.33870.026*
C40.71674 (7)0.72922 (18)0.41968 (6)0.0195 (2)
C50.72901 (7)0.55021 (18)0.46686 (6)0.0203 (2)
H50.78890.51400.49950.024*
C60.65369 (7)0.42403 (18)0.46634 (6)0.0204 (2)
C70.60170 (8)0.1182 (2)0.51853 (7)0.0298 (3)
H7A0.56020.21380.53260.045*
H7B0.6261−0.00120.55400.045*
H7C0.56790.05130.47160.045*
C80.44478 (8)0.8805 (2)0.28219 (7)0.0334 (3)
H8A0.46561.01890.30980.050*
H8B0.37840.88930.25500.050*
H8C0.47720.86180.24900.050*
C90.78119 (8)1.03228 (18)0.36833 (6)0.0226 (2)
H9A0.83461.13460.38730.027*
H9B0.72541.11960.36370.027*
C100.77348 (7)0.95312 (18)0.29448 (6)0.0196 (2)
C110.78065 (8)0.72861 (19)0.27911 (6)0.0260 (3)
H110.78870.61660.31450.031*
C120.77589 (9)0.6707 (2)0.21078 (7)0.0317 (3)
H120.78140.51830.19900.038*
C130.76299 (9)0.8373 (2)0.16036 (6)0.0308 (3)
H130.75970.80280.11330.037*
C140.75496 (8)1.0555 (2)0.18028 (6)0.0271 (3)
H140.74451.16960.14510.033*
C150.88451 (7)0.7731 (2)0.45984 (6)0.0234 (3)
H15A0.92690.83640.43830.028*
H15B0.88540.60770.45530.028*
C160.91979 (7)0.83373 (19)0.53877 (6)0.0210 (2)
C171.01752 (8)0.7486 (2)0.65253 (7)0.0306 (3)
H171.06020.64810.68460.037*
C180.99727 (8)0.9438 (2)0.68009 (7)0.0317 (3)
H181.02650.97910.72940.038*
C190.93321 (8)1.0875 (2)0.63410 (7)0.0327 (3)
H190.91681.22290.65140.039*
C200.89329 (8)1.0310 (2)0.56236 (6)0.0272 (3)
H200.84841.12600.52980.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0161 (4)0.0381 (5)0.0312 (5)−0.0010 (3)0.0040 (3)0.0086 (4)
O20.0244 (4)0.0261 (5)0.0271 (4)−0.0037 (3)0.0083 (3)0.0054 (3)
N10.0175 (5)0.0297 (5)0.0204 (5)−0.0037 (4)0.0069 (4)0.0031 (4)
N20.0220 (5)0.0220 (5)0.0235 (5)−0.0002 (4)0.0058 (4)0.0019 (4)
N30.0217 (5)0.0299 (6)0.0281 (5)0.0012 (4)0.0075 (4)0.0028 (4)
C10.0184 (5)0.0268 (6)0.0234 (6)−0.0056 (4)0.0090 (4)−0.0015 (5)
C20.0177 (5)0.0289 (6)0.0200 (5)0.0005 (4)0.0066 (4)−0.0014 (5)
C30.0208 (5)0.0243 (6)0.0199 (5)−0.0005 (4)0.0082 (4)0.0012 (4)
C40.0188 (5)0.0233 (6)0.0182 (5)−0.0030 (4)0.0089 (4)−0.0046 (4)
C50.0166 (5)0.0248 (6)0.0190 (5)−0.0006 (4)0.0058 (4)−0.0023 (4)
C60.0242 (6)0.0210 (6)0.0173 (5)−0.0013 (4)0.0093 (4)−0.0018 (4)
C70.0315 (7)0.0280 (6)0.0317 (7)−0.0062 (5)0.0137 (5)0.0036 (5)
C80.0237 (6)0.0366 (7)0.0342 (7)0.0031 (5)0.0040 (5)0.0092 (6)
C90.0227 (5)0.0220 (6)0.0248 (6)−0.0050 (4)0.0109 (5)−0.0017 (5)
C100.0147 (5)0.0217 (6)0.0220 (5)−0.0023 (4)0.0062 (4)0.0003 (4)
C110.0338 (6)0.0201 (6)0.0268 (6)−0.0021 (5)0.0142 (5)0.0030 (5)
C120.0460 (7)0.0209 (6)0.0321 (7)−0.0032 (5)0.0190 (6)−0.0039 (5)
C130.0400 (7)0.0305 (7)0.0235 (6)−0.0057 (5)0.0135 (5)−0.0032 (5)
C140.0300 (6)0.0262 (6)0.0218 (6)−0.0036 (5)0.0056 (5)0.0039 (5)
C150.0162 (5)0.0305 (6)0.0247 (6)−0.0033 (4)0.0091 (4)−0.0020 (5)
C160.0143 (5)0.0239 (6)0.0252 (6)−0.0033 (4)0.0076 (4)0.0006 (5)
C170.0214 (6)0.0402 (7)0.0278 (6)0.0024 (5)0.0062 (5)0.0070 (6)
C180.0232 (6)0.0474 (8)0.0228 (6)−0.0051 (5)0.0065 (5)−0.0037 (6)
C190.0307 (7)0.0334 (7)0.0347 (7)−0.0018 (5)0.0129 (6)−0.0090 (6)
C200.0217 (6)0.0277 (6)0.0297 (6)0.0024 (5)0.0063 (5)0.0003 (5)

Geometric parameters (Å, °)

O1—C21.3719 (14)C8—H8B0.9800
O1—C81.4290 (15)C8—H8C0.9800
O2—C61.3733 (13)C9—C101.5185 (15)
O2—C71.4237 (14)C9—H9A0.9900
N1—C41.3872 (14)C9—H9B0.9900
N1—C91.4475 (14)C10—C111.3862 (16)
N1—C151.4577 (14)C11—C121.3905 (17)
N2—C101.3408 (14)C11—H110.9500
N2—C141.3417 (15)C12—C131.3788 (17)
N3—C161.3411 (15)C12—H120.9500
N3—C171.3458 (16)C13—C141.3794 (18)
C1—C61.3827 (16)C13—H130.9500
C1—C21.3949 (16)C14—H140.9500
C1—H10.9500C15—C161.5185 (16)
C2—C31.3847 (15)C15—H15A0.9900
C3—C41.4169 (16)C15—H15B0.9900
C3—H30.9500C16—C201.3859 (16)
C4—C51.3923 (15)C17—C181.3738 (18)
C5—C61.3935 (15)C17—H170.9500
C5—H50.9500C18—C191.3816 (18)
C7—H7A0.9800C18—H180.9500
C7—H7B0.9800C19—C201.3852 (17)
C7—H7C0.9800C19—H190.9500
C8—H8A0.9800C20—H200.9500
C2—O1—C8118.28 (9)N1—C9—H9B108.6
C6—O2—C7117.23 (9)C10—C9—H9B108.6
C4—N1—C9121.20 (9)H9A—C9—H9B107.6
C4—N1—C15119.49 (9)N2—C10—C11122.92 (10)
C9—N1—C15117.81 (9)N2—C10—C9114.84 (9)
C10—N2—C14116.99 (10)C11—C10—C9122.23 (10)
C16—N3—C17116.98 (11)C10—C11—C12118.68 (11)
C6—C1—C2117.86 (10)C10—C11—H11120.7
C6—C1—H1121.1C12—C11—H11120.7
C2—C1—H1121.1C13—C12—C11119.13 (12)
O1—C2—C3123.36 (10)C13—C12—H12120.4
O1—C2—C1114.32 (10)C11—C12—H12120.4
C3—C2—C1122.31 (10)C12—C13—C14118.00 (11)
C2—C3—C4119.01 (10)C12—C13—H13121.0
C2—C3—H3120.5C14—C13—H13121.0
C4—C3—H3120.5N2—C14—C13124.25 (11)
N1—C4—C5120.32 (10)N2—C14—H14117.9
N1—C4—C3120.64 (10)C13—C14—H14117.9
C5—C4—C3119.04 (10)N1—C15—C16113.97 (9)
C4—C5—C6120.21 (10)N1—C15—H15A108.8
C4—C5—H5119.9C16—C15—H15A108.8
C6—C5—H5119.9N1—C15—H15B108.8
O2—C6—C1124.25 (10)C16—C15—H15B108.8
O2—C6—C5114.19 (9)H15A—C15—H15B107.7
C1—C6—C5121.56 (10)N3—C16—C20122.72 (11)
O2—C7—H7A109.5N3—C16—C15115.94 (10)
O2—C7—H7B109.5C20—C16—C15121.27 (10)
H7A—C7—H7B109.5N3—C17—C18124.13 (11)
O2—C7—H7C109.5N3—C17—H17117.9
H7A—C7—H7C109.5C18—C17—H17117.9
H7B—C7—H7C109.5C17—C18—C19118.20 (12)
O1—C8—H8A109.5C17—C18—H18120.9
O1—C8—H8B109.5C19—C18—H18120.9
H8A—C8—H8B109.5C18—C19—C20118.94 (12)
O1—C8—H8C109.5C18—C19—H19120.5
H8A—C8—H8C109.5C20—C19—H19120.5
H8B—C8—H8C109.5C19—C20—C16119.00 (11)
N1—C9—C10114.49 (9)C19—C20—H20120.5
N1—C9—H9A108.6C16—C20—H20120.5
C10—C9—H9A108.6
C8—O1—C2—C3−3.27 (16)C14—N2—C10—C110.28 (16)
C8—O1—C2—C1177.50 (10)C14—N2—C10—C9179.13 (9)
C6—C1—C2—O1179.80 (10)N1—C9—C10—N2178.10 (9)
C6—C1—C2—C30.56 (17)N1—C9—C10—C11−3.04 (15)
O1—C2—C3—C4179.59 (10)N2—C10—C11—C120.90 (17)
C1—C2—C3—C4−1.24 (17)C9—C10—C11—C12−177.88 (10)
C9—N1—C4—C5176.48 (9)C10—C11—C12—C13−0.87 (18)
C15—N1—C4—C510.78 (15)C11—C12—C13—C14−0.28 (18)
C9—N1—C4—C3−3.31 (16)C10—N2—C14—C13−1.55 (17)
C15—N1—C4—C3−169.01 (10)C12—C13—C14—N21.56 (19)
C2—C3—C4—N1−179.48 (10)C4—N1—C15—C16−83.43 (13)
C2—C3—C4—C50.72 (16)C9—N1—C15—C16110.39 (11)
N1—C4—C5—C6−179.36 (10)C17—N3—C16—C20−1.19 (16)
C3—C4—C5—C60.44 (16)C17—N3—C16—C15175.75 (9)
C7—O2—C6—C1−1.89 (16)N1—C15—C16—N3150.93 (10)
C7—O2—C6—C5178.13 (10)N1—C15—C16—C20−32.08 (14)
C2—C1—C6—O2−179.33 (10)C16—N3—C17—C18−0.83 (18)
C2—C1—C6—C50.65 (16)N3—C17—C18—C191.91 (19)
C4—C5—C6—O2178.84 (9)C17—C18—C19—C20−0.95 (18)
C4—C5—C6—C1−1.15 (17)C18—C19—C20—C16−0.90 (18)
C4—N1—C9—C10−79.37 (13)N3—C16—C20—C192.06 (17)
C15—N1—C9—C1086.56 (12)C15—C16—C20—C19−174.73 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.493.3050 (15)144

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2657).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 45, 8342–8356. [PubMed]
  • Frisch, M. & Cahil, C. L. (2008). Cryst. Growth. Des. 8, 2921–2928.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. [PubMed]
  • Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
  • Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth. Des. 8, 4533–4545.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Shirman, T., Lamere, J.-F., Shimon, L. J. W., Gupta, T., Martin, J. M. L. & van der Boom, M. E. (2008). Cryst. Growth. Des. 8, 3066–3072.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography