PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1497.
Published online 2009 November 4. doi:  10.1107/S1600536809044705
PMCID: PMC2971984

Diaqua­bis(2,2′-bi-1H-imidazole-κ2 N 3,N 3′)nickel(II) bis­(3-methyl­benzoate) 3-methyl­benzoic acid disolvate

Abstract

In the title compound, [Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2, the NiII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-m1497-efi3.jpg) is coordinated by two N,N′-bidentate 2,2′-biimidazole ligands and two water mol­ecules, resulting in a slightly distorted trans-NiO2N4 geometry for the metal ion. In the crystal, the components are linked by N—H(...)O and O—H(...)O hydrogen bonds, generating an infinite two-dimensional network running parallel to (100). The methyl group of the benzoic acid mol­ecule is disordered over two sites in a 0.563 (17):0.437 (17) ratio.

Related literature

For a related structure, see: Yang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1497-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2
  • M r = 905.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1497-efi4.jpg
  • a = 34.747 (15) Å
  • b = 9.237 (4) Å
  • c = 14.099 (6) Å
  • β = 93.564 (8)°
  • V = 4516 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 296 K
  • 0.25 × 0.19 × 0.13 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.886, T max = 0.939
  • 12088 measured reflections
  • 4417 independent reflections
  • 2926 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.091
  • wR(F 2) = 0.269
  • S = 1.00
  • 4417 reflections
  • 287 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.27 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044705/hb5141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044705/hb5141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,2'-Biimidazole is an interesting ligand because it has two N sites and two –NH donors. Both N-donors having the stronger coordination ability and flexible coordination modes. Moreover, two –NH donors can interact with other hydrogen bonding acceptors via hydrogen bonds (Yang et al., 2009). Herein, we report the title compound, (I).

In the symmetric unit of (I), Ni2+ having an inversion centre is coordinated by two water molecules occupied the axial sites and two 2,2'-biimidazole ligands through respective two N atoms occupied the equatorial plane, which results in a more regular octahedron (Ni1—N1 2.092 (3) Å; Ni1—N4 2.097 (3) Å; Ni1—O1W 2.105 (3) Å). Each water molecule interacts with 3-methyl-benzenecarboxylate and 3-methyl-benzenecarboxylic acid through O1W—H1WA···O1 and O1W—H1WA···O3 hydrogen bonds (Fig. 1). Adjacent units are linked together by two pairs of N2—H2A···O1 and N3—H3A···O1, and one O4—H4···O2 hydrogen bonds into an infinite two-dimensional network along the (100) direction (Fig. 2).

Experimental

NiSO4.6H2O(0.18 g, 0.70 mmol) was added into the aqueous solution (15 ml) including 3-methyl-benzenecarboxylic acid (0.14 g, 1.0 mmol) and NaOH (0.04 g, 1.0 mmol) and refluxed for 30 min. Then an ethanol solution (10 ml) containing 2,2'-biimidazole (0.08 g, 0.60 mmol) was slowly added with continuous stirring. The resulting solution was refluxed for 3 h, filtered and kept for crystallization. After nine days, green blocks of (I) were obtained.

Refinement

H atoms bonded to N atoms, carboxyl and water O atoms are located from the difference maps and refined isotropically with 0.89 (1) Å for N—H, 0.85 (1) Å for O—H and the distance H···H = 1.34 (1) Å from water molecule using DFIX commands, respectively. All the remaining H atoms were positioned geometrically with C–H = 0.93 Å (aromatic) and 0.96 Å (methyl) and were refined as riding with Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(C) (methyl). The disordered methyl carbon was devided into two parts C22 and C22' with the anisotrophic displacement parameters 0.102 and 0.117, respectively. H atoms bound to them are not added.

Figures

Fig. 1.
Molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. H-bonds are shown as dashed lines. Disordered part of C22' and H atoms not involved in the hydrogen bonds have been omitted for the clarity. Unlabeled atoms ...
Fig. 2.
Part of the crystal structure of (I), showing the formation of the two-dimensional network along the (100) direction. Hydrogen bonds are shown as dashed lines. Disordered part of C22' and H atoms not involved in the hydrogen bonds have been omitted for ...

Crystal data

[Ni(C6H6N4)2(H2O)2](C8H7O2)2·2C8H8O2F(000) = 1896
Mr = 905.60Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2285 reflections
a = 34.747 (15) Åθ = 2.3–22.7°
b = 9.237 (4) ŵ = 0.50 mm1
c = 14.099 (6) ÅT = 296 K
β = 93.564 (8)°Block, green
V = 4516 (3) Å30.25 × 0.19 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer4417 independent reflections
Radiation source: fine-focus sealed tube2926 reflections with I > 2σ(I)
graphiteRint = 0.057
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −41→42
Tmin = 0.886, Tmax = 0.939k = −11→10
12088 measured reflectionsl = −12→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.269w = 1/[σ2(Fo2) + (0.1377P)2 + 26.2495P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4417 reflectionsΔρmax = 2.27 e Å3
287 parametersΔρmin = −0.39 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.25000.25000.00000.03434 (15)
N10.23426 (8)0.0763 (3)0.08464 (19)0.0378 (7)
N20.20745 (8)0.0135 (3)0.2167 (2)0.0439 (8)
H2A0.1934 (3)0.014 (4)0.2673 (7)0.052 (11)*
N30.18763 (9)0.3465 (3)0.2311 (2)0.0497 (8)
H3A0.1819 (7)0.2986 (18)0.2832 (8)0.052 (4)*
N40.21821 (9)0.3628 (3)0.0979 (2)0.0428 (8)
O30.37232 (9)0.1134 (4)0.1108 (3)0.0818 (11)
O40.40602 (10)−0.0866 (4)0.1032 (3)0.0912 (13)
H40.3851 (3)−0.1337 (17)0.108 (2)0.040 (10)*
O1W0.29960 (7)0.2675 (2)0.09288 (19)0.0485 (7)
H1WA0.3112 (4)0.3481 (6)0.094 (2)0.024 (8)*
H1WB0.3173 (3)0.2048 (8)0.090 (3)0.065 (13)*
C10.23884 (11)−0.0697 (4)0.0987 (3)0.0453 (10)
H10.2515−0.13210.05930.054*
C20.22193 (11)−0.1089 (4)0.1793 (2)0.0455 (10)
H20.2206−0.20190.20410.055*
C30.21533 (10)0.1215 (4)0.1581 (2)0.0370 (8)
C40.20634 (10)0.2754 (4)0.1646 (3)0.0406 (9)
C50.18747 (12)0.4897 (4)0.2047 (3)0.0561 (11)
H50.17670.56610.23680.067*
C60.20573 (12)0.4988 (4)0.1241 (3)0.0563 (11)
H60.20950.58390.09060.068*
C150.40297 (13)0.0524 (5)0.1077 (3)0.0600 (12)
C160.44042 (13)0.1300 (6)0.1130 (3)0.0694 (14)
C170.44083 (15)0.2790 (6)0.1168 (3)0.0726 (15)
H170.41750.32790.11840.087*
C180.47472 (17)0.3594 (7)0.1183 (4)0.1015 (19)
C190.5081 (2)0.2839 (10)0.1168 (6)0.144 (3)
H190.53120.33470.11640.173*
C200.50918 (19)0.1346 (10)0.1159 (6)0.138 (3)
H200.53280.08680.11880.166*
C210.47463 (5)0.05430 (17)0.11043 (11)0.116 (3)
H210.4748−0.04610.10530.140*
C220.47839 (5)0.50541 (17)0.12443 (11)0.102 (5)*0.437 (17)
C22'0.46819 (5)0.54041 (17)0.12053 (11)0.117 (4)*0.563 (17)
O10.32801 (5)0.53214 (17)0.11606 (11)0.0665 (9)
O20.34258 (5)0.76257 (17)0.10071 (11)0.0758 (10)
C70.34256 (5)0.63145 (17)0.07347 (11)0.0528 (11)
C80.36146 (5)0.59948 (17)−0.01813 (11)0.0536 (11)
C90.37173 (5)0.45833 (17)−0.04007 (11)0.0560 (11)
H90.36620.38440.00170.067*
C100.38992 (13)0.4239 (6)−0.1220 (3)0.0663 (14)
C110.39556 (13)0.5355 (7)−0.1846 (3)0.0798 (17)
H110.40690.5150−0.24110.096*
C120.38518 (13)0.6747 (7)−0.1668 (3)0.0777 (15)
H120.38870.7467−0.21160.093*
C130.36927 (13)0.7085 (5)−0.0815 (3)0.0660 (13)
H130.36390.8043−0.06700.079*
C140.40365 (16)0.2721 (6)−0.1383 (4)0.0880 (17)
H14A0.40710.2582−0.20470.132*
H14B0.38490.2044−0.11790.132*
H14C0.42770.2566−0.10270.132*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0416 (3)0.0285 (3)0.0337 (3)0.0008 (3)0.0086 (2)0.0003 (2)
N10.0382 (15)0.0335 (14)0.0427 (15)−0.0014 (12)0.0097 (12)−0.0007 (12)
N20.0453 (16)0.0449 (16)0.0422 (15)−0.0005 (13)0.0087 (13)0.0048 (13)
N30.0542 (17)0.0502 (16)0.0464 (16)0.0046 (14)0.0160 (13)0.0003 (14)
N40.0506 (16)0.0339 (14)0.0457 (15)−0.0016 (13)0.0165 (13)−0.0025 (12)
O30.0574 (18)0.069 (2)0.120 (3)−0.0004 (16)0.0135 (18)−0.0039 (19)
O40.070 (2)0.069 (2)0.135 (3)0.0079 (18)0.016 (2)−0.008 (2)
O1W0.0504 (14)0.0431 (14)0.0523 (14)−0.0011 (12)0.0068 (11)0.0002 (11)
C10.054 (2)0.0344 (17)0.0485 (19)0.0021 (16)0.0121 (16)−0.0034 (15)
C20.060 (2)0.0359 (17)0.0407 (18)−0.0001 (16)0.0068 (16)0.0080 (15)
C30.0375 (17)0.0382 (17)0.0353 (16)−0.0004 (14)0.0028 (13)0.0007 (14)
C40.0418 (18)0.0376 (18)0.0432 (18)0.0012 (14)0.0074 (14)−0.0022 (14)
C50.067 (2)0.045 (2)0.058 (2)0.0105 (19)0.0118 (19)−0.0050 (18)
C60.077 (3)0.0348 (18)0.059 (2)0.0029 (18)0.025 (2)−0.0019 (17)
C150.058 (2)0.068 (3)0.055 (2)0.001 (2)0.0119 (19)0.001 (2)
C160.050 (2)0.105 (4)0.054 (2)−0.007 (2)0.0080 (19)−0.012 (2)
C170.068 (3)0.092 (3)0.057 (3)−0.022 (3)0.005 (2)−0.006 (2)
C180.095 (4)0.146 (5)0.065 (3)−0.057 (3)0.020 (3)−0.025 (3)
C190.076 (4)0.233 (8)0.126 (6)−0.068 (5)0.022 (4)−0.042 (5)
C200.053 (3)0.207 (8)0.153 (7)0.003 (5)−0.001 (4)−0.027 (7)
C210.077 (4)0.145 (6)0.128 (5)0.009 (4)0.010 (4)−0.038 (5)
O10.0949 (19)0.0607 (16)0.0472 (14)−0.0204 (15)0.0307 (14)−0.0076 (13)
O20.101 (2)0.0515 (16)0.0805 (19)−0.0076 (16)0.0458 (16)−0.0024 (14)
C70.056 (2)0.054 (2)0.049 (2)−0.0049 (19)0.0106 (17)−0.0028 (18)
C80.054 (2)0.070 (2)0.0381 (18)−0.005 (2)0.0124 (16)0.0022 (18)
C90.052 (2)0.068 (2)0.048 (2)−0.003 (2)0.0063 (18)−0.0046 (19)
C100.051 (2)0.094 (3)0.053 (2)0.000 (2)0.0013 (19)−0.015 (2)
C110.057 (2)0.135 (4)0.049 (2)0.009 (3)0.0175 (19)0.006 (3)
C120.060 (3)0.118 (4)0.057 (2)0.003 (3)0.018 (2)0.027 (3)
C130.055 (2)0.081 (3)0.063 (2)−0.001 (2)0.015 (2)0.020 (2)
C140.083 (3)0.102 (4)0.080 (3)0.015 (3)0.015 (3)−0.038 (3)

Geometric parameters (Å, °)

Ni1—N1i2.092 (3)C16—C211.381 (5)
Ni1—N12.092 (3)C16—C171.378 (7)
Ni1—N4i2.097 (3)C17—C181.391 (7)
Ni1—N42.097 (3)C17—H170.9300
Ni1—O1Wi2.105 (3)C18—C191.354 (10)
Ni1—O1W2.105 (3)C18—C221.357 (7)
N1—C31.328 (4)C18—C22'1.688 (7)
N1—C11.371 (4)C19—C201.380 (12)
N2—C31.335 (4)C19—H190.9300
N2—C21.357 (5)C20—C211.409 (8)
N2—H2A0.889 (8)C20—H200.9300
N3—C41.345 (5)C21—H210.9300
N3—C51.374 (5)O1—C71.2229
N3—H3A0.890 (9)O2—C71.2706
N4—C41.325 (4)C7—C81.5138
N4—C61.387 (5)C8—C131.384 (5)
O3—C151.208 (5)C8—C91.3917
O4—C151.290 (6)C9—C101.388 (5)
O4—H40.852 (8)C9—H90.9300
O1W—H1WA0.847 (7)C10—C111.379 (7)
O1W—H1WB0.849 (7)C10—C141.503 (7)
C1—C21.362 (5)C11—C121.362 (8)
C1—H10.9300C11—H110.9300
C2—H20.9300C12—C131.391 (7)
C3—C41.460 (5)C12—H120.9300
C5—C61.338 (6)C13—H130.9300
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C15—C161.483 (6)C14—H14C0.9600
N1i—Ni1—N1180.0O3—C15—C16123.0 (4)
N1i—Ni1—N4i80.71 (11)O4—C15—C16114.2 (4)
N1—Ni1—N4i99.29 (11)C21—C16—C17120.0 (4)
N1i—Ni1—N499.29 (11)C21—C16—C15120.5 (4)
N1—Ni1—N480.71 (11)C17—C16—C15119.5 (4)
N4i—Ni1—N4180.0C16—C17—C18122.7 (5)
N1i—Ni1—O1Wi86.39 (10)C16—C17—H17118.6
N1—Ni1—O1Wi93.61 (10)C18—C17—H17118.6
N4i—Ni1—O1Wi89.82 (11)C19—C18—C22115.8 (5)
N4—Ni1—O1Wi90.18 (11)C19—C18—C17116.7 (7)
N1i—Ni1—O1W93.61 (10)C22—C18—C17127.4 (5)
N1—Ni1—O1W86.39 (10)C19—C18—C22'128.8 (5)
N4i—Ni1—O1W90.18 (11)C22—C18—C22'13.21 (8)
N4—Ni1—O1W89.82 (11)C17—C18—C22'114.5 (5)
O1Wi—Ni1—O1W180.0C18—C19—C20122.6 (7)
C3—N1—C1104.8 (3)C18—C19—H19118.7
C3—N1—Ni1111.3 (2)C20—C19—H19118.7
C1—N1—Ni1143.6 (2)C19—C20—C21120.1 (6)
C3—N2—C2106.7 (3)C19—C20—H20119.9
C3—N2—H2A129 (2)C21—C20—H20119.9
C2—N2—H2A124 (2)C16—C21—C20117.6 (4)
C4—N3—C5106.0 (3)C16—C21—H21121.2
C4—N3—H3A118.4 (13)C20—C21—H21121.2
C5—N3—H3A134.8 (12)O1—C7—O2124.0
C4—N4—C6104.3 (3)O1—C7—C8119.1
C4—N4—Ni1111.4 (2)O2—C7—C8116.9
C6—N4—Ni1144.3 (2)C13—C8—C9118.4 (2)
C15—O4—H4115.6 (12)C13—C8—C7121.4 (2)
Ni1—O1W—H1WA116.6 (14)C9—C8—C7120.2
Ni1—O1W—H1WB119 (2)C10—C9—C8122.4 (2)
H1WA—O1W—H1WB104.7 (10)C10—C9—H9118.8
C2—C1—N1109.3 (3)C8—C9—H9118.8
C2—C1—H1125.4C11—C10—C9116.8 (4)
N1—C1—H1125.4C11—C10—C14122.7 (4)
N2—C2—C1107.0 (3)C9—C10—C14120.4 (4)
N2—C2—H2126.5C12—C11—C10122.6 (4)
C1—C2—H2126.5C12—C11—H11118.7
N1—C3—N2112.3 (3)C10—C11—H11118.7
N1—C3—C4118.2 (3)C11—C12—C13119.6 (5)
N2—C3—C4129.5 (3)C11—C12—H12120.2
N4—C4—N3112.5 (3)C13—C12—H12120.2
N4—C4—C3118.1 (3)C8—C13—C12120.0 (4)
N3—C4—C3129.4 (3)C8—C13—H13120.0
C6—C5—N3107.3 (3)C12—C13—H13120.0
C6—C5—H5126.4C10—C14—H14A109.5
N3—C5—H5126.4C10—C14—H14B109.5
C5—C6—N4110.0 (3)H14A—C14—H14B109.5
C5—C6—H6125.0C10—C14—H14C109.5
N4—C6—H6125.0H14A—C14—H14C109.5
O3—C15—O4122.8 (4)H14B—C14—H14C109.5

Symmetry codes: (i) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O2ii0.85 (1)1.76 (1)2.606 (4)172 (3)
O1W—H1WB···O30.85 (1)2.09 (1)2.897 (4)158 (2)
O1W—H1WA···O10.85 (1)1.82 (1)2.649 (3)166 (2)
N3—H3A···O2iii0.89 (1)1.92 (1)2.763 (3)157 (2)
N2—H2A···O1iii0.89 (1)1.85 (1)2.732 (3)169 (2)

Symmetry codes: (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5141).

References

  • Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, L. F., Cao, M. L., Mo, H. J., Hao, H. G., Wu, J. J., Zhang, J. P. & Ye, B. H. (2009). CrystEngComm, 11, 1114–1121.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography