PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3130.
Published online 2009 November 21. doi:  10.1107/S1600536809048478
PMCID: PMC2971982

2-C-Phenyl­erythrono-1,4-lactone

Abstract

The title compound (systematic name: 3,4-dihydr­oxy-3-phenyl­furan-2-one), C10H10O4, features a five-membered γ-lactone ring with an envelope conformation at the C atom carrying the hydr­oxy group without the phenyl substituent. In the crystal, supra­molecular chains mediated by O—H(...)O hydrogen bonding are formed along the a-axis direction. These are consolidated in the crystal structure by C—H(...)O contacts.

Related literature

For background on the leaf-closing substance of the tropical legume Leucaena leucocephalam, see: Ueda et al. (2001 [triangle]); Gogoi & Argade (2004 [triangle]); Koumbis et al. (2006 [triangle]). For the synthesis of polyhydroxy­ated compounds from 1,2-dioxines, see: Robinson et al. (2006 [triangle], 2009 [triangle]); Valente et al. (2009 [triangle]); Pedersen et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3130-scheme1.jpg

Experimental

Crystal data

  • C10H10O4
  • M r = 194.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3130-efi1.jpg
  • a = 6.485 (2) Å
  • b = 7.324 (3) Å
  • c = 18.962 (7) Å
  • β = 99.378 (7)°
  • V = 888.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 173 K
  • 0.50 × 0.20 × 0.20 mm

Data collection

  • Rigaku AFC12κ/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.778, T max = 1.000
  • 21683 measured reflections
  • 1834 independent reflections
  • 1818 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.128
  • S = 1.21
  • 1834 reflections
  • 133 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048478/sj2685sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048478/sj2685Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

supplementary crystallographic information

Comment

Our recent investigations into the dihydroxyation of the alkene component of 1,2-dioxines has allowed access to a diverse range of polyhydroxyated compounds (Robinson et al., 2006, 2009; Valente et al., 2009). Application of this methodology to the synthesis of erythrono-γ-lactones, such as the title compound, (I), provided a concise route to potassium (2R,3R)-2,3,4-trihydroxy-2-methylbutanoate (Pedersen et al., 2009), recently identified as a leaf-closing substance of the tropical legume Leucaena leucocephalam (Ueda et al., 2001; Gogoi & Argade, 2004; Koumbis et al., 2006).

The molecular structure of (I), Fig. 1, shows the five-membered γ-lactone ring to adopt an envelope conformation on the C4 atom, with this atom being orientated in the opposite direction to the phenyl ring. Both hydroxy substituents are orientated to the same side of the γ-lactone ring but the hydroxy-H atoms face opposite directions. This arrangement allows each molecule to bridge two neighbouring molecules via O—Hhydroxy···Ohydroxy hydrogen bonds resulting in the formation of ten-membered {···HOC2O}2 synthons and the construction of supramolecular chains aligned along the a direction, Fig. 2 and Table 1. The chains are consolidated in the 3-D crystal structure via C—H···O contacts, Fig. 3 and Table 1.

Experimental

For full synthetic procedures and characterization data see Pedersen et al. (2009). To a solution of 2,3-O-isopropylidene-2-C-phenyl-erythrono-1,4-lactone (159 mg, 0.68 mmol) in MeOH (10 ml) was added activated 50 W Dowex X8 resin (~ 1 g), and the mixture was stirred at 343 K until complete by TLC (~2–3 days). The reaction was allowed to cool and then filtered to remove the Dowex. The methanol was removed under reduced pressure and the residue was purified by flash chromatography to furnish (I) (115 mg, 87%) as a colourless solid. The pure material was recrystallized from a small amount of dichloromethane which was allowed to slowly evaporate at ambient temperature producing colourless prisms, m.pt. 381–382 K

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O–bound H-atoms were located in a difference Fourier map and refined with O–H restraints of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
Supramolecular chain formation along the a axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines).
Fig. 3.
View in projection along the a axis in (I) showing the C—H···O contacts (blue dashed lines) linking the supramolecular chains (aligned along a) stabilized by O—H···O hydrogen bonds (orange ...

Crystal data

C10H10O4F(000) = 408
Mr = 194.18Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3641 reflections
a = 6.485 (2) Åθ = 2.2–27.5°
b = 7.324 (3) ŵ = 0.11 mm1
c = 18.962 (7) ÅT = 173 K
β = 99.378 (7)°Block, colourless
V = 888.6 (5) Å30.50 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku AFC12κ/SATURN724 diffractometer1834 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→7
Tmin = 0.778, Tmax = 1.000k = −9→9
21683 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.21w = 1/[σ2(Fo2) + (0.0689P)2 + 0.2568P] where P = (Fo2 + 2Fc2)/3
1834 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.00052 (16)0.88359 (15)0.43151 (5)0.0315 (3)
O2−0.14194 (16)0.60605 (17)0.42959 (6)0.0353 (3)
O30.27440 (16)0.46977 (14)0.44174 (5)0.0274 (3)
H3O0.23120.46530.48110.041*
O40.39267 (17)0.77862 (15)0.52318 (5)0.0299 (3)
H4O0.47780.69200.53210.045*
C20.0052 (2)0.7033 (2)0.42422 (7)0.0260 (3)
C30.2212 (2)0.64295 (18)0.41109 (7)0.0224 (3)
C40.3562 (2)0.80116 (19)0.44799 (7)0.0242 (3)
H40.48860.81820.42820.029*
C50.2076 (2)0.9607 (2)0.43117 (8)0.0292 (3)
H5A0.23861.05740.46780.035*
H5B0.21831.01320.38380.035*
C310.2337 (2)0.63650 (18)0.33154 (7)0.0229 (3)
C320.4037 (2)0.5486 (2)0.31027 (8)0.0287 (3)
H320.50470.49000.34480.034*
C330.4263 (3)0.5462 (2)0.23878 (8)0.0336 (4)
H330.54120.48390.22450.040*
C340.2823 (3)0.6341 (2)0.18799 (8)0.0323 (4)
H340.29930.63360.13920.039*
C350.1141 (3)0.7223 (2)0.20881 (8)0.0313 (4)
H350.01550.78330.17420.038*
C360.0879 (2)0.72227 (19)0.28042 (8)0.0272 (3)
H36−0.02990.78110.29420.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0283 (6)0.0361 (6)0.0304 (6)0.0074 (4)0.0055 (4)−0.0040 (4)
O20.0265 (6)0.0529 (7)0.0274 (5)−0.0055 (5)0.0068 (4)0.0059 (5)
O30.0346 (6)0.0268 (5)0.0221 (5)0.0030 (4)0.0078 (4)0.0050 (4)
O40.0351 (6)0.0355 (6)0.0185 (5)0.0059 (4)0.0027 (4)−0.0025 (4)
C20.0261 (7)0.0363 (8)0.0158 (6)0.0018 (5)0.0039 (5)0.0016 (5)
C30.0239 (7)0.0248 (7)0.0189 (6)0.0020 (5)0.0043 (5)0.0020 (5)
C40.0263 (7)0.0280 (7)0.0187 (6)−0.0006 (5)0.0048 (5)−0.0012 (5)
C50.0326 (8)0.0270 (7)0.0277 (7)0.0011 (6)0.0040 (6)−0.0018 (5)
C310.0267 (7)0.0230 (6)0.0192 (6)−0.0029 (5)0.0048 (5)−0.0007 (5)
C320.0299 (7)0.0326 (7)0.0242 (7)0.0030 (6)0.0060 (5)0.0000 (5)
C330.0372 (8)0.0382 (8)0.0281 (7)0.0002 (6)0.0131 (6)−0.0041 (6)
C340.0471 (9)0.0314 (7)0.0199 (6)−0.0079 (6)0.0100 (6)−0.0030 (5)
C350.0417 (9)0.0281 (7)0.0218 (7)−0.0011 (6)−0.0015 (6)0.0024 (5)
C360.0302 (7)0.0273 (7)0.0236 (7)0.0019 (5)0.0027 (5)−0.0007 (5)

Geometric parameters (Å, °)

O1—C21.3286 (19)C5—H5B0.9900
O1—C51.4639 (19)C31—C361.389 (2)
O2—C21.2085 (18)C31—C321.392 (2)
O3—C31.4142 (16)C32—C331.387 (2)
O3—H3O0.8400C32—H320.9500
O4—C41.4164 (16)C33—C341.386 (2)
O4—H4O0.8401C33—H330.9500
C2—C31.5275 (19)C34—C351.379 (2)
C3—C311.5243 (18)C34—H340.9500
C3—C41.5486 (19)C35—C361.396 (2)
C4—C51.515 (2)C35—H350.9500
C4—H41.0000C36—H360.9500
C5—H5A0.9900
C2—O1—C5109.94 (11)O1—C5—H5B110.8
C3—O3—H3O107.8C4—C5—H5B110.8
C4—O4—H4O106.6H5A—C5—H5B108.8
O2—C2—O1122.75 (13)C36—C31—C32119.22 (13)
O2—C2—C3126.94 (14)C36—C31—C3122.46 (12)
O1—C2—C3110.28 (12)C32—C31—C3118.24 (12)
O3—C3—C31109.28 (10)C33—C32—C31120.24 (14)
O3—C3—C2111.18 (11)C33—C32—H32119.9
C31—C3—C2111.60 (10)C31—C32—H32119.9
O3—C3—C4113.78 (11)C34—C33—C32120.46 (14)
C31—C3—C4110.68 (10)C34—C33—H33119.8
C2—C3—C4100.11 (11)C32—C33—H33119.8
O4—C4—C5107.35 (11)C35—C34—C33119.55 (13)
O4—C4—C3110.92 (11)C35—C34—H34120.2
C5—C4—C3100.87 (11)C33—C34—H34120.2
O4—C4—H4112.3C34—C35—C36120.39 (14)
C5—C4—H4112.3C34—C35—H35119.8
C3—C4—H4112.3C36—C35—H35119.8
O1—C5—C4104.89 (11)C31—C36—C35120.14 (14)
O1—C5—H5A110.8C31—C36—H36119.9
C4—C5—H5A110.8C35—C36—H36119.9
C5—O1—C2—O2172.88 (12)C3—C4—C5—O133.83 (13)
C5—O1—C2—C3−5.30 (14)O3—C3—C31—C36139.75 (13)
O2—C2—C3—O3−31.23 (18)C2—C3—C31—C3616.37 (18)
O1—C2—C3—O3146.85 (11)C4—C3—C31—C36−94.19 (15)
O2—C2—C3—C3191.06 (16)O3—C3—C31—C32−43.46 (16)
O1—C2—C3—C31−90.86 (13)C2—C3—C31—C32−166.83 (12)
O2—C2—C3—C4−151.79 (13)C4—C3—C31—C3282.61 (15)
O1—C2—C3—C426.29 (13)C36—C31—C32—C33−0.3 (2)
O3—C3—C4—O4−40.31 (15)C3—C31—C32—C33−177.20 (13)
C31—C3—C4—O4−163.81 (11)C31—C32—C33—C341.2 (2)
C2—C3—C4—O478.35 (12)C32—C33—C34—C35−0.9 (2)
O3—C3—C4—C5−153.79 (11)C33—C34—C35—C36−0.4 (2)
C31—C3—C4—C582.71 (13)C32—C31—C36—C35−1.0 (2)
C2—C3—C4—C5−35.13 (12)C3—C31—C36—C35175.79 (12)
C2—O1—C5—C4−18.85 (14)C34—C35—C36—C311.3 (2)
O4—C4—C5—O1−82.33 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.841.952.7717 (19)167
O4—H4o···O3ii0.841.992.8188 (19)168
C34—H34···O4iii0.952.463.379 (2)164

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2685).

References

  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Gogoi, S. & Argade, N. P. (2004). Tetrahedron, 60, 9093–9097.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Koumbis, A. E., Kaitaidis, A. D. & Kotoulas, S. S. (2006). Tetrahedron Lett. 47, 8479–8481.
  • Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403. [PubMed]
  • Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096. [PubMed]
  • Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ueda, M., Sohtome, Y., Ueda, K. & Yamamura, S. (2001). Tetrahedron Lett. 42, 3109–3111.
  • Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography