PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3274.
Published online 2009 November 28. doi:  10.1107/S1600536809050399
PMCID: PMC2971977

(3R,4R,5S)-4-Hydr­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]-4,5-dihydro­furan-2(3H)-one

Abstract

The relative configuration of the title compound, C11H18O3, which was synthesized using a catalytic asymmetric Gosteli–Claisen rearrangement, a diastereoselective reduction with K-Selectride and an Evans aldol addition, was corroborated by single-crystal X-ray diffraction analysis. The five-membered ring has an envelope conformation with a dihedral angle of 29.46 (16)° between the coplanar part and the flap (the hydr­oxy-bearing ring C atom). In the crystal, mol­ecules are connected via bifurcated O—H(...)(O,O) hydrogen bonds, generating [010] chains.

Related literature

For further synthetic details, see: Abraham et al. (2001 [triangle], 2004 [triangle]); Brown (1973 [triangle]); Evans et al. (1981 [triangle], 1999 [triangle]); Otera et al. (1992 [triangle]). For the structure of the major diastereisomer arising from the same reaction, see: Gille et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3274-scheme1.jpg

Experimental

Crystal data

  • C11H18O3
  • M r = 198.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3274-efi1.jpg
  • a = 7.7265 (10) Å
  • b = 6.4798 (8) Å
  • c = 11.0598 (16) Å
  • β = 92.563 (14)°
  • V = 553.17 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 K
  • 0.50 × 0.18 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer
  • Absorption correction: none
  • 3255 measured reflections
  • 1129 independent reflections
  • 737 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.048
  • S = 0.99
  • 1129 reflections
  • 131 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050399/hb5238sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050399/hb5238Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), was synthesized using a catalytic asymmetric Gosteli-Claisen rearrangement (Abraham et al., 2001; Abraham et al., 2004), a diastereoselective reduction with K-Selectride (Brown, 1973) and an Evans aldol addition (Evans et al., 1981). In order to verify the relative configuration of the obtained diastereomeric aldol adducts, 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl) -4-isopropyloxazolidin-2-one, (III), the γ-lactones (II) and (I) were prepared by removal of the silyl protecting group (Otera et al., 1992) and subsequent in situ lactonization. The diastereomeric mixture of the γ-lactones could be separated by column chromatography. An X-ray crystal structure analysis of the major diastereomer (II) has already been published (Gille et al., 2008). Fig. 1 depicts the structure of the isolated minor diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the Evans aldol addition (C3 R and C4 R), the diastereoselective reduction with K-Selectride (C5 S) and the catalytic asymmetric Claisen rearrangement (C[2] S and C[3] R) using the chiral Lewis acid [Cu{(S,S)-tert-butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

Experimental

The title compound, (I), was synthesized from the corresponding aldol adduct, (III), using tetrabutylammonium fluoride (TBAF) in the presence of acetic acid (Otera et al., 1992) to remove the silyl protecting group. The subsequent lactonization proceeded in situ .

To an ice-cooled solution of crude (III) (dr = 49/51, 0.04 g, 0.10 mmol, 1 eq) in THF (1 ml, 11 ml/mmol III) was added a solution of AcOH (0.5 µl, 0.010 mmol, 0.1 eq) in THF (0.1 ml, 1.1 ml/mmol III) and TBAF (1 M in THF, 0.11 ml, 0.11 mmol, 1.1 eq). After 15 min at 273 K, the reaction mixture was diluted by the addition of saturated aqueous NH4Cl solution. The aqueous layer was extracted with CH2Cl2 (4x) and the combined organic phases were dried (MgSO4) and concentrated under reduced pressure. Purification by flash chromatography (crude product charged on silica gel, cyclohexane/ethyl acetate 10/1 to 5/1) afforded lactone (I) (0.006 g, 0.03 mmol, 30%) as a single diastereomer and additionally a mixture of (I) and the diastereomer (II) (0.013 g, 0.07 mmol, 69%, dr = 70/30) as colourless crystals. Subsequent recrystallization of (I) by vapor diffusion technique from isohexane and ethyl acetate provided a colourless plate of (I) single-crystal suitable for an X-ray crystal structure analysis. Rf 0.35 (cyclohexane/ethyl acetate 2/1); mp 378 K; 1H NMR (CDCl3, 400 MHz, δ): 0.92 (d, 3J = 7.1 Hz, 3H), 1.00 (d, 3J = 7.0 Hz, 3H), 1.32 (d, 3J = 7.2 Hz, 3H), 1.85 (dqd, 3J = 8.2, 7.1, 4.9 Hz, 1H), 2.1 (br. s, 1H), 2.51–2.63 (m, 1H), 2.63 (dq, 3J = 8.4, 7.2 Hz, 1H), 3.92 (dd, 3J = 7.4, 8.2 Hz, 1H), 4.07 (dd, 3J = 8.4, 7.4 Hz, 1H), 5.04 (dd, 3J(E) = 17.8 Hz, 2J = 1.3 Hz, 1H), 5.05 (dd, 3J(Z) = 10.0 Hz, 2J = 1.3 Hz, 1H), 5.81 (ddd, 3J(E) = 17.8 Hz, 3J(Z) = 10.0 Hz, 3J = 6.8 Hz, 1H); 13C NMR (CDCl3, 101 MHz, δ): 10.1 (CH3), 12.9 (CH3), 13.7 (CH3), 37.8 (CH), 41.4 (CH), 44.4 (CH), 78.0 (CH), 84.7 (CH), 114.5 (CH2), 142.6 (CH), 176.4 (C); IR (cm-1): 3400(br,s) (ν O—H, OH in H-bridges), 3085(w) (ν C—H, olefin), 2970(s) 2925(s) 2890(m) 2855(m) (ν C—H, CH, CH3), 1735(s) (ν C=O, lactone), 1640(w) (ν C=C), 1455(m) (δas C—H, CH), 1380(m) (δs C—H, CH3), 1095(s) (ν C—O, alcohol), 1010(s) 910(s) (δ C—H, olefin); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.6; H, 9.4; [α]D20 +16.0 (c 0.6, CHCl3); C11H18O3, M = 198.26 g/mol.

Figures

Fig. 1.
: The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.

Crystal data

C11H18O3F(000) = 216
Mr = 198.25Dx = 1.190 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1159 reflections
a = 7.7265 (10) Åθ = 2.6–29.1°
b = 6.4798 (8) ŵ = 0.09 mm1
c = 11.0598 (16) ÅT = 173 K
β = 92.563 (14)°Plate, colourless
V = 553.17 (13) Å30.50 × 0.18 × 0.04 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer737 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.040
graphiteθmax = 25.5°, θmin = 2.6°
Detector resolution: 16.0560 pixels mm-1h = −10→10
ω scansk = −7→8
3255 measured reflectionsl = −14→14
1129 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.011P)2] where P = (Fo2 + 2Fc2)/3
1129 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2173 (2)0.1438 (2)0.07628 (15)0.0251 (5)
O20.2731 (2)0.0175 (3)−0.10413 (17)0.0328 (6)
O30.1599 (2)0.6838 (3)0.05289 (17)0.0370 (6)
H30.20320.77300.00820.056*
C10.2453 (3)0.1658 (5)−0.0428 (2)0.0267 (8)
C20.2329 (4)0.3900 (4)−0.0771 (2)0.0251 (8)
H20.11280.4168−0.11090.030*
C30.2533 (3)0.4969 (4)0.0446 (2)0.0275 (8)
H3A0.37900.52300.06450.033*
C40.1847 (4)0.3431 (4)0.1331 (3)0.0251 (7)
H40.05690.36300.13820.030*
C50.2674 (4)0.3375 (4)0.2598 (2)0.0293 (8)
H50.39540.32800.25120.035*
C60.2135 (4)0.1458 (4)0.3322 (2)0.0314 (8)
H60.22920.02380.27840.038*
C70.3345 (4)0.1158 (5)0.4405 (3)0.0409 (9)
H70.45460.11470.42550.049*
C80.2950 (4)0.0912 (5)0.5523 (2)0.0487 (10)
H8A0.17700.09100.57300.058*
H8B0.38410.07350.61340.058*
C90.3607 (3)0.4531 (4)−0.1730 (2)0.0350 (9)
H9A0.47890.4182−0.14430.053*
H9B0.35230.6022−0.18720.053*
H9C0.33230.3793−0.24870.053*
C100.2329 (4)0.5418 (4)0.3243 (2)0.0401 (9)
H10A0.29220.65410.28360.060*
H10B0.27650.53290.40870.060*
H10C0.10800.56890.32180.060*
C110.0231 (3)0.1493 (5)0.3622 (2)0.0434 (9)
H11A−0.00820.01670.39790.065*
H11B−0.04840.17280.28810.065*
H11C0.00330.26050.42010.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0324 (13)0.0134 (13)0.0295 (11)−0.0005 (11)0.0026 (10)−0.0004 (11)
O20.0385 (14)0.0195 (12)0.0403 (14)−0.0003 (11)0.0013 (11)−0.0058 (12)
O30.0427 (14)0.0116 (11)0.0573 (15)0.0053 (11)0.0087 (11)0.0052 (12)
C10.0145 (16)0.0214 (18)0.044 (2)−0.0032 (17)−0.0048 (15)0.003 (2)
C20.0219 (17)0.0155 (18)0.038 (2)−0.0004 (14)0.0015 (15)0.0037 (15)
C30.0222 (18)0.0125 (16)0.048 (2)0.0004 (16)0.0007 (16)0.0048 (16)
C40.0229 (17)0.0143 (16)0.0380 (19)0.0038 (15)0.0020 (15)−0.0005 (16)
C50.0261 (17)0.0224 (19)0.039 (2)0.0040 (16)−0.0001 (16)−0.0068 (17)
C60.048 (2)0.0133 (19)0.0330 (18)0.0029 (17)0.0011 (16)−0.0060 (17)
C70.049 (2)0.038 (2)0.0359 (17)0.0078 (19)0.0001 (17)0.0032 (18)
C80.054 (3)0.052 (2)0.039 (2)−0.003 (2)−0.005 (2)0.0019 (19)
C90.0337 (19)0.0271 (19)0.045 (2)−0.0014 (17)0.0090 (16)0.0070 (17)
C100.046 (2)0.025 (2)0.049 (2)−0.0045 (17)0.0060 (18)−0.0113 (17)
C110.049 (2)0.037 (2)0.0442 (19)−0.010 (2)0.0005 (17)0.007 (2)

Geometric parameters (Å, °)

O1—C11.352 (3)C6—C71.499 (3)
O1—C41.463 (3)C6—C111.523 (3)
O2—C11.201 (3)C6—H61.0000
O3—C31.415 (3)C7—C81.296 (3)
O3—H30.8400C7—H70.9500
C1—C21.504 (4)C8—H8A0.9500
C2—C31.516 (3)C8—H8B0.9500
C2—C91.536 (3)C9—H9A0.9800
C2—H21.0000C9—H9B0.9800
C3—C41.510 (3)C9—H9C0.9800
C3—H3A1.0000C10—H10A0.9800
C4—C51.515 (3)C10—H10B0.9800
C4—H41.0000C10—H10C0.9800
C5—C101.533 (3)C11—H11A0.9800
C5—C61.544 (4)C11—H11B0.9800
C5—H51.0000C11—H11C0.9800
C1—O1—C4111.3 (2)C7—C6—C5110.2 (2)
C3—O3—H3109.5C11—C6—C5112.7 (2)
O2—C1—O1120.4 (3)C7—C6—H6106.6
O2—C1—C2129.9 (2)C11—C6—H6106.6
O1—C1—C2109.7 (3)C5—C6—H6106.6
C1—C2—C3102.4 (2)C8—C7—C6127.8 (3)
C1—C2—C9113.4 (2)C8—C7—H7116.1
C3—C2—C9116.5 (2)C6—C7—H7116.1
C1—C2—H2108.1C7—C8—H8A120.0
C3—C2—H2108.1C7—C8—H8B120.0
C9—C2—H2108.1H8A—C8—H8B120.0
O3—C3—C4109.1 (2)C2—C9—H9A109.5
O3—C3—C2114.6 (2)C2—C9—H9B109.5
C4—C3—C2104.4 (2)H9A—C9—H9B109.5
O3—C3—H3A109.5C2—C9—H9C109.5
C4—C3—H3A109.5H9A—C9—H9C109.5
C2—C3—H3A109.5H9B—C9—H9C109.5
O1—C4—C3103.4 (2)C5—C10—H10A109.5
O1—C4—C5107.6 (2)C5—C10—H10B109.5
C3—C4—C5118.0 (2)H10A—C10—H10B109.5
O1—C4—H4109.1C5—C10—H10C109.5
C3—C4—H4109.1H10A—C10—H10C109.5
C5—C4—H4109.1H10B—C10—H10C109.5
C4—C5—C10109.6 (2)C6—C11—H11A109.5
C4—C5—C6112.7 (2)C6—C11—H11B109.5
C10—C5—C6113.4 (2)H11A—C11—H11B109.5
C4—C5—H5106.9C6—C11—H11C109.5
C10—C5—H5106.9H11A—C11—H11C109.5
C6—C5—H5106.9H11B—C11—H11C109.5
C7—C6—C11113.6 (2)
C4—O1—C1—O2−179.5 (2)C2—C3—C4—O128.3 (3)
C4—O1—C1—C2−0.1 (3)O3—C3—C4—C5−90.1 (3)
O2—C1—C2—C3−162.7 (3)C2—C3—C4—C5147.0 (2)
O1—C1—C2—C318.0 (3)O1—C4—C5—C10−178.7 (2)
O2—C1—C2—C9−36.3 (4)C3—C4—C5—C1064.9 (3)
O1—C1—C2—C9144.4 (2)O1—C4—C5—C6−51.4 (3)
C1—C2—C3—O3−147.4 (2)C3—C4—C5—C6−167.8 (2)
C9—C2—C3—O388.3 (3)C4—C5—C6—C7163.9 (2)
C1—C2—C3—C4−28.1 (3)C10—C5—C6—C7−70.9 (3)
C9—C2—C3—C4−152.4 (2)C4—C5—C6—C11−68.0 (3)
C1—O1—C4—C3−18.0 (3)C10—C5—C6—C1157.3 (3)
C1—O1—C4—C5−143.6 (2)C11—C6—C7—C80.8 (5)
O3—C3—C4—O1151.2 (2)C5—C6—C7—C8128.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.842.523.023 (2)120
O3—H3···O2i0.842.102.931 (3)171

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5238).

References

  • Abraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700–4703. [PubMed]
  • Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281–1294.
  • Brown, C. A. (1973). J. Am. Chem. Soc. 95, 4100–4102.
  • Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.
  • Evans, D. A., Miller, S. J., Lectka, T. & Matt, V. P. (1999). J. Am. Chem. Soc. 121, 7559–7573.
  • Gille, A., Schürmann, M., Preut, H. & Hiersemann, M. (2008). Acta Cryst. E64, o1835. [PMC free article] [PubMed]
  • Otera, J., Niibo, Y. & Nozaki, H. (1992). Tetrahedron Lett. 33, 3655–3658.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography