PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3186.
Published online 2009 November 25. doi:  10.1107/S1600536809049046
PMCID: PMC2971976

3-Hydr­oxy-5,5-dimethyl-2-(2-oxo­propyl)cyclo­hex-2-enone

Abstract

The title compound, C11H16O3, was obtained by reaction of dimedone, 5,5-dimethylcyclohexane-1,3-dione, and α-chloro­acetone. The cyclo­hexenone ring exhibits an envelope conformation with puckering amplitudes Q = 0.433 (2) and Φ = −109.0 (3)°. The 2-oxopropyl fragment is almost perpendicular to the cyclo­hexa­none ring [dihedral angle = 77.72 (8)°]. In the crystal, the mol­ecules are linked to each other through O—H(...)O hydrogen bonding, building a chain parallel to the b axis.

Related literature

The title compound is used in the synthesis of heterocyclic compounds. For the general synthesis of various heterocyclic compounds, see: Knorr (1884 [triangle]); Paal (1885 [triangle]); Martínez et al. (1995 [triangle], 2002 [triangle], 2006 [triangle]). For related structures, see: Nagarajan et al. (1986 [triangle]); Schaeffer & Vince (1962 [triangle]); Selvanayagam et al. (2003 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3186-scheme1.jpg

Experimental

Crystal data

  • C11H16O3
  • M r = 196.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3186-efi3.jpg
  • a = 10.005 (3) Å
  • b = 13.633 (4) Å
  • c = 8.441 (2) Å
  • β = 105.352 (4)°
  • V = 1110.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 K
  • 0.32 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 8977 measured reflections
  • 2032 independent reflections
  • 1573 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.126
  • S = 1.06
  • 2032 reflections
  • 134 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809049046/dn2511sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049046/dn2511Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JC thanks the Decanato de Investigación y Desarrollo, Dirección de Desarrollo Profesoral Universidad Simón Bolívar, and FONACIT-S3–2009000393 for financial support.

supplementary crystallographic information

Comment

1,4-dicarbonyl derivatives are important intermediates in organic chemistry, they have great utility in the synthesis of various heterocyclic compounds. The Paal-Knorr reaction (Knorr, 1884; Paal, 1885) uses 1,4-dicarbonyl compounds to obtain different types of molecules like pyrroles, furans or thiophenes. (Martínez et al., 1995, 2002, 2006).

In the title compound, The cyclohexenone ring adopt an envelope conformation with overall puckering amplitudes Q 0.433 (2) and Φ = -109.0 (3) (Cremer & Pople, 1975), with the keto-enol (O1—C1—C2—C3—O2) fragment planar and the acetonyl moiety is almost perpendicular to this plane making a dihedral angle of 77.72 (8) ° (Fig. 1). Distances and angles agree with values reported in related compounds ( Nagarajan et al., 1986; Schaeffer & Vince, 1962; Selvanayagam, et al., 2003)

In the crystal the molecules are linked to each other through O-H···O hydrogen bonding building a chain parallel to the b axis (Table 1).

Experimental

A slurry of dimedone (0.01 equiv), chloroketone (0.01 equiv), and anhydrous potassium carbonate (0.01 equiv) in chloroform was kept stirred at room temperature for 48 h. The mixture was filtered; the insoluble salts were dissolved in water and the filtered solution was made acidic with concentrated HCl. The precipitate was filtered off and washed with water. Yield 70%. The Melting point (uncorrected) was determined on a Melt-Tem II melting points apparatus: 406–407 K. (Martínez et al., 2006). The title compound (I) was obtained as suitable crystal for X-ray analysis after recrystallization of the solid from 1:1 Methanol-Ethyl Acetate mixture. 1H NMR [200 MHz, CDCl3, δ (p.p.m.)]: 9.0 (brs, 1H), 3.41 (s, 2H), 2.35 (s, 4H), 2.16 (s, 3H), 1.08 (s, 6H).

Refinement

H atom on hydroxyl group was found in Fourier map and refined with Uiso(H) = 1.2 UeqC(O). H on C atoms were placed in geometrically idealized positions [0.97 Å(CH2) and 0.96 Å (CH3)] and treated as riding on their parent atom with Uiso(H) = 1.2 UeqC(CH2) and 1.5 UeqC(CH3).

Figures

Fig. 1.
Molecular structure of (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of infinite chains parallel to the b axis through O-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry ...

Crystal data

C11H16O3F(000) = 424
Mr = 196.24Dx = 1.174 Mg m3
Monoclinic, P21/cMelting point: 406 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.005 (3) ÅCell parameters from 4286 reflections
b = 13.633 (4) Åθ = 2.5–25.3°
c = 8.441 (2) ŵ = 0.08 mm1
β = 105.352 (4)°T = 298 K
V = 1110.3 (5) Å3Prism, colourless
Z = 40.32 × 0.16 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer1573 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
graphiteθmax = 25.4°, θmin = 2.6°
Detector resolution: 0.83 pixels mm-1h = −12→12
ω scansk = −16→16
8977 measured reflectionsl = −10→10
2032 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126w = 1/[σ2(Fo2) + (0.0704P)2 + 0.0505P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2032 reflectionsΔρmax = 0.22 e Å3
134 parametersΔρmin = −0.19 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.96277 (13)0.77843 (7)0.23295 (14)0.0636 (4)
O20.92396 (12)0.44317 (7)0.16061 (14)0.0577 (4)
H20.9653 (18)0.3880 (11)0.199 (2)0.069*
O30.68935 (15)0.65312 (12)0.26209 (17)0.0924 (5)
C11.00978 (16)0.69523 (9)0.27353 (17)0.0457 (4)
C20.94081 (15)0.61103 (9)0.18949 (17)0.0431 (4)
C30.99433 (15)0.52082 (9)0.23391 (17)0.0422 (4)
C41.12691 (15)0.50283 (10)0.36178 (18)0.0467 (4)
H4A1.17570.44950.32550.056*
H4B1.10550.48200.46220.056*
C51.22308 (15)0.59193 (10)0.39985 (17)0.0473 (4)
C61.13588 (17)0.68191 (11)0.41453 (18)0.0529 (4)
H6A1.10690.67660.51510.064*
H6B1.19350.73990.42340.064*
C70.80924 (16)0.62619 (11)0.05840 (18)0.0510 (4)
H7A0.82300.6794−0.01190.061*
H7B0.79010.5674−0.00850.061*
C80.68542 (18)0.64907 (12)0.1183 (2)0.0616 (5)
C90.5541 (2)0.6657 (2)−0.0119 (3)0.1196 (10)
H9A0.53410.6094−0.08240.179*
H9B0.56390.7224−0.07540.179*
H9C0.47960.67620.03820.179*
C101.29416 (18)0.60741 (12)0.26238 (19)0.0609 (5)
H10A1.22520.61470.15960.091*
H10B1.35160.55180.25680.091*
H10C1.35030.66550.28440.091*
C111.33259 (19)0.57556 (14)0.5624 (2)0.0702 (5)
H11A1.38370.51680.55550.105*
H11B1.28800.56910.64960.105*
H11C1.39480.63050.58440.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0798 (8)0.0312 (6)0.0775 (8)0.0051 (5)0.0171 (6)0.0014 (5)
O20.0632 (8)0.0335 (6)0.0708 (7)−0.0047 (5)0.0083 (6)−0.0065 (5)
O30.0792 (10)0.1301 (13)0.0747 (9)0.0173 (9)0.0326 (8)0.0072 (8)
C10.0586 (9)0.0313 (7)0.0510 (8)0.0022 (6)0.0213 (7)−0.0002 (6)
C20.0489 (9)0.0356 (7)0.0451 (8)0.0023 (6)0.0130 (7)−0.0011 (6)
C30.0486 (8)0.0330 (7)0.0474 (8)−0.0033 (6)0.0171 (7)−0.0039 (6)
C40.0524 (9)0.0362 (7)0.0527 (8)0.0045 (6)0.0162 (7)0.0032 (6)
C50.0493 (9)0.0441 (8)0.0460 (8)−0.0033 (6)0.0086 (7)−0.0012 (6)
C60.0665 (11)0.0404 (8)0.0509 (8)−0.0057 (7)0.0136 (8)−0.0086 (6)
C70.0573 (10)0.0442 (8)0.0496 (8)0.0046 (7)0.0107 (7)0.0000 (6)
C80.0595 (11)0.0612 (10)0.0649 (11)0.0083 (8)0.0183 (9)0.0112 (8)
C90.0639 (14)0.193 (3)0.0988 (17)0.0375 (16)0.0157 (13)0.0363 (18)
C100.0557 (10)0.0657 (11)0.0631 (10)−0.0091 (8)0.0188 (8)−0.0028 (8)
C110.0639 (11)0.0764 (12)0.0604 (10)−0.0016 (9)−0.0008 (9)0.0026 (9)

Geometric parameters (Å, °)

O1—C11.2409 (16)C6—H6A0.9700
O2—C31.3298 (16)C6—H6B0.9700
O2—H20.877 (14)C7—C81.490 (2)
O3—C81.2050 (19)C7—H7A0.9700
C1—C21.4276 (19)C7—H7B0.9700
C1—C61.499 (2)C8—C91.491 (3)
C2—C31.3541 (18)C9—H9A0.9600
C2—C71.493 (2)C9—H9B0.9600
C3—C41.492 (2)C9—H9C0.9600
C4—C51.530 (2)C10—H10A0.9600
C4—H4A0.9700C10—H10B0.9600
C4—H4B0.9700C10—H10C0.9600
C5—C101.528 (2)C11—H11A0.9600
C5—C111.529 (2)C11—H11B0.9600
C5—C61.529 (2)C11—H11C0.9600
C3—O2—H2111.8 (12)C8—C7—C2115.25 (13)
O1—C1—C2119.99 (14)C8—C7—H7A108.5
O1—C1—C6120.52 (13)C2—C7—H7A108.5
C2—C1—C6119.45 (12)C8—C7—H7B108.5
C3—C2—C1119.28 (13)C2—C7—H7B108.5
C3—C2—C7122.51 (12)H7A—C7—H7B107.5
C1—C2—C7118.19 (12)O3—C8—C7122.90 (16)
O2—C3—C2118.19 (13)O3—C8—C9121.54 (17)
O2—C3—C4117.74 (12)C7—C8—C9115.56 (16)
C2—C3—C4124.07 (12)C8—C9—H9A109.5
C3—C4—C5114.25 (11)C8—C9—H9B109.5
C3—C4—H4A108.7H9A—C9—H9B109.5
C5—C4—H4A108.7C8—C9—H9C109.5
C3—C4—H4B108.7H9A—C9—H9C109.5
C5—C4—H4B108.7H9B—C9—H9C109.5
H4A—C4—H4B107.6C5—C10—H10A109.5
C10—C5—C11109.57 (14)C5—C10—H10B109.5
C10—C5—C6109.94 (12)H10A—C10—H10B109.5
C11—C5—C6109.45 (12)C5—C10—H10C109.5
C10—C5—C4110.09 (12)H10A—C10—H10C109.5
C11—C5—C4109.51 (13)H10B—C10—H10C109.5
C6—C5—C4108.26 (12)C5—C11—H11A109.5
C1—C6—C5114.28 (11)C5—C11—H11B109.5
C1—C6—H6A108.7H11A—C11—H11B109.5
C5—C6—H6A108.7C5—C11—H11C109.5
C1—C6—H6B108.7H11A—C11—H11C109.5
C5—C6—H6B108.7H11B—C11—H11C109.5
H6A—C6—H6B107.6
O1—C1—C2—C3179.22 (13)C3—C4—C5—C11163.65 (13)
C6—C1—C2—C3−3.0 (2)C3—C4—C5—C644.38 (16)
O1—C1—C2—C7−2.5 (2)O1—C1—C6—C5−150.70 (14)
C6—C1—C2—C7175.23 (13)C2—C1—C6—C531.5 (2)
C1—C2—C3—O2176.08 (12)C10—C5—C6—C169.73 (17)
C7—C2—C3—O2−2.1 (2)C11—C5—C6—C1−169.88 (13)
C1—C2—C3—C4−3.2 (2)C4—C5—C6—C1−50.56 (17)
C7—C2—C3—C4178.68 (13)C3—C2—C7—C8102.90 (17)
O2—C3—C4—C5161.35 (13)C1—C2—C7—C8−75.28 (18)
C2—C3—C4—C5−19.4 (2)C2—C7—C8—O3−1.6 (2)
C3—C4—C5—C10−75.82 (16)C2—C7—C8—C9179.14 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.88 (1)1.69 (1)2.5685 (16)177 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2511).

References

  • Bruker (1999). SMART andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Knorr, L. (1884). Chem. Ber. 17, 1635–1642.
  • Martínez, R., Ávila, G. J., Duran, E. M., Ramírez, M. T., Pérez, A. & Cañas, R. (2002). Bioorg. Med. Chem. 12, 1675–1677. [PubMed]
  • Martínez, R., Ávila, G. J., Ramírez, M. T., Pérez, A. & Martínez, A. (2006). Bioorg. Med. Chem. 14, 4007–4016. [PubMed]
  • Martínez, R., Ávila, G. J. & Reyes, E. (1995). Synth. Commun. 25, 1071–1076.
  • Nagarajan, K., Shah, R. K. & Shenoy, S. J. (1986). Indian J. Chem. Sect. B, 25, 697–708.
  • Paal, C. (1885). Chem. Ber. 18, 367–371.
  • Schaeffer, H. J. & Vince, R. (1962). J. Org. Chem. 27, 4502–4505.
  • Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o261–o262.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography