PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3271.
Published online 2009 November 28. doi:  10.1107/S160053680905051X
PMCID: PMC2971971

cis-Cyclo­heptane-1,2-diol

Abstract

The title compound, C7H14O2, is a vicinal diol derived from cyclo­heptane with cis-orientated hydr­oxy groups. The mol­ecules shows no non-crystallographic symmetry. The O—C—C—O torsion angles of both mol­ecules present in the asymmetric unit [−66.4 (2) and −66.9 (2)°] are similar to those in trans-configured cyclo­hexane derivatives (including pyran­oses) as well as rac-trans-cyclo­heptane-1,2-diol, but smaller than those in trans-configured cyclo­pentane derivatives (including furan­oses). In the crystal structure, O—H(...)O hydrogen bonds furnish the formation of sheets parallel to [110].

Related literature

For the synthesis, see: Becker et al. (2001 [triangle]). For torsion angles of cis- and trans-configured cyclo­hexane-1,2-diols, see: Sillanpää et al. (1984 [triangle]). For the structure of the corresponding rac-trans-cyclo­heptane-1,2-diol, see: Betz & Klüfers (2007 [triangle]). For graph-set analysis, see Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3271-scheme1.jpg

Experimental

Crystal data

  • C7H14O2
  • M r = 130.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3271-efi1.jpg
  • a = 7.4148 (5) Å
  • b = 8.7629 (5) Å
  • c = 12.4531 (6) Å
  • α = 103.861 (4)°
  • β = 105.685 (4)°
  • γ = 90.189 (4)°
  • V = 754.32 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 200 K
  • 0.25 × 0.22 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 4882 measured reflections
  • 2658 independent reflections
  • 1965 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.207
  • S = 1.04
  • 2658 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Nonius, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680905051X/dn2506sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905051X/dn2506Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Sandra Albrecht for professional support.

supplementary crystallographic information

Comment

During our investigation of the chelation abilities of selected cis- and trans-configured cyclic vicinal diols and the influence of bonding to various metals, semi-metals and non-metals on the geometry of the chelating molecule, the structure of cis-cycloheptane-1,2-diol was determined.

Both molecules present in the asymmetric unit adopt chair-like conformations (Fig. 1). The O–C–C–O torsion angle is found at 60° and 66°, respectively. Both molecules possess (RS/SR)-configuration.

A disorder of a methylene group in one of the molecules was accounted for by a split model. The major position dominates by a 4:1 ratio.

In the crystal structure, hydrogen bonds furnish the formation of sheets parallel to [1 1 0]. The hydrophobic cycloheptane moieties form the surfaces of these sheets. The description of the hydrogen bonding pattern can be done in two ways: first, it can be seen as a combination of annealated ten- and eighteen-membered rings with diverging directions of rotation. As an alternative, the pattern may be seen as a set of two cooperative, antidromic chains (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor on the unitary level is DDR22(10)R22(10). While the eighteen-membered rings appear on the ternary level of graph-set analysis with a R66(18) descriptor, the cooperative chains appear on the quarternary level with a C44(8) descriptor.

Experimental

The title compound was prepared by standard procedures upon neutral aqueous dihydroxylation of cycloheptene with potassium permanganate (Becker et al., 2001). Crystals suitable for X-ray diffraction were directly obtained from the solidified reaction product.

Refinement

All carbon bonded H-atoms were placed in calculated positions (C—H 1.00 Å for methine groups, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for both groups. Hydroxyl H atoms were allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)). For the refinement their U(H) was set to 1.5Ueq(O).

Figures

Fig. 1.
The two molecules comprising the asymmetric unit of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms. Only the major component of the split C atom (C 16) is shown for clarity.
Fig. 2.
Intermolecular interactions in the crystal structure of the title compound, viewed along [0 0 -1]. For clarity, the carbocyclic moieties were not depicted and the labelling of atoms was replaced by the following colour code: blue arrows indicate hydrogen ...

Crystal data

C7H14O2Z = 4
Mr = 130.18F(000) = 288
Triclinic, P1Dx = 1.146 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4148 (5) ÅCell parameters from 8679 reflections
b = 8.7629 (5) Åθ = 3.1–25.0°
c = 12.4531 (6) ŵ = 0.08 mm1
α = 103.861 (4)°T = 200 K
β = 105.685 (4)°Platelet, colourless
γ = 90.189 (4)°0.25 × 0.22 × 0.05 mm
V = 754.32 (8) Å3

Data collection

Nonius KappaCCD diffractometer1965 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.057
MONTEL, graded multilayered X-ray opticsθmax = 25.1°, θmin = 3.3°
ω scansh = −8→8
4882 measured reflectionsk = −10→10
2658 independent reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: difference Fourier map
wR(F2) = 0.207H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1106P)2 + 0.3333P] where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = −0.32 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O110.2847 (2)0.6535 (2)0.06402 (15)0.0429 (5)
H110.35780.61900.02410.064*
O120.4661 (2)0.36087 (19)0.06017 (15)0.0413 (5)
H120.38300.28950.01910.062*
O210.0359 (2)−0.1787 (2)−0.05660 (15)0.0419 (5)
H210.1149−0.2280−0.01840.063*
O220.2163 (2)0.11011 (19)−0.06570 (15)0.0425 (5)
H220.14340.1044−0.02530.064*
C110.2358 (3)0.5332 (3)0.1133 (2)0.0367 (6)
H1110.14200.45530.05120.044*
C120.4071 (3)0.4461 (3)0.1566 (2)0.0361 (6)
H1210.37130.36950.19660.043*
C130.5755 (4)0.5519 (3)0.2380 (2)0.0507 (7)
H1310.69060.49710.23280.061*
H1320.58220.64880.21110.061*
C140.5765 (6)0.5994 (5)0.3625 (3)0.0884 (13)
H1410.61320.50800.39530.106*
H1420.67760.68430.40240.106*
C150.4085 (7)0.6530 (7)0.3932 (3)0.1032 (15)
H1510.44740.72810.47010.124*
H1520.33920.56110.40070.124*
C1610.2784 (8)0.7289 (5)0.3149 (3)0.0689 (17)0.817 (10)
H1610.35230.79920.28850.083*0.817 (10)
H1620.20130.79570.35830.083*0.817 (10)
C1620.192 (2)0.626 (2)0.3178 (12)0.053 (6)0.183 (10)
H1630.13970.53040.33100.064*0.183 (10)
H1640.12710.71550.35170.064*0.183 (10)
C170.1397 (4)0.6103 (4)0.2034 (3)0.0571 (8)
H1710.08350.52700.22840.069*
H1720.03620.66930.16800.069*
C210.0931 (3)−0.1616 (3)−0.1545 (2)0.0347 (6)
H2110.1280−0.2659−0.19400.042*
C220.2640 (3)−0.0448 (3)−0.1131 (2)0.0355 (6)
H2210.3573−0.0783−0.05000.043*
C230.3614 (4)−0.0332 (3)−0.2039 (3)0.0536 (8)
H2310.4245−0.1314−0.22260.064*
H2320.46000.0548−0.17060.064*
C240.2292 (6)−0.0064 (4)−0.3191 (3)0.0742 (10)
H2410.15640.0856−0.29970.089*
H2420.30840.0201−0.36550.089*
C250.0944 (6)−0.1437 (5)−0.3915 (3)0.0847 (12)
H2510.0633−0.1368−0.47260.102*
H2520.1594−0.2415−0.38710.102*
C26−0.0835 (6)−0.1586 (5)−0.3613 (3)0.0785 (11)
H261−0.1345−0.2698−0.39250.094*
H262−0.1743−0.0940−0.40150.094*
C27−0.0755 (4)−0.1119 (3)−0.2359 (2)0.0484 (7)
H271−0.1909−0.1574−0.22660.058*
H272−0.07660.0043−0.21220.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O110.0463 (11)0.0451 (10)0.0495 (11)0.0157 (8)0.0234 (8)0.0231 (8)
O120.0415 (10)0.0325 (9)0.0512 (11)0.0000 (7)0.0211 (8)0.0037 (7)
O210.0418 (10)0.0427 (10)0.0526 (11)0.0119 (7)0.0224 (8)0.0228 (8)
O220.0459 (10)0.0340 (9)0.0489 (11)−0.0024 (7)0.0224 (8)0.0028 (7)
C110.0374 (13)0.0354 (12)0.0390 (13)0.0030 (10)0.0118 (10)0.0110 (10)
C120.0395 (13)0.0320 (12)0.0403 (13)0.0060 (9)0.0135 (10)0.0129 (10)
C130.0404 (15)0.0483 (16)0.0512 (16)0.0065 (11)−0.0014 (12)0.0054 (12)
C140.103 (3)0.094 (3)0.0451 (19)0.008 (2)−0.0056 (19)0.0039 (18)
C150.117 (4)0.135 (4)0.051 (2)0.013 (3)0.024 (2)0.009 (2)
C1610.109 (4)0.058 (3)0.055 (2)0.030 (3)0.050 (2)0.0120 (19)
C1620.052 (10)0.074 (13)0.034 (8)−0.005 (8)0.026 (7)0.000 (7)
C170.0635 (19)0.0571 (17)0.074 (2)0.0252 (14)0.0443 (16)0.0309 (15)
C210.0397 (13)0.0279 (11)0.0386 (13)0.0029 (9)0.0140 (10)0.0088 (9)
C220.0343 (12)0.0358 (13)0.0370 (13)0.0042 (9)0.0119 (10)0.0081 (10)
C230.0609 (18)0.0463 (15)0.0661 (18)0.0053 (13)0.0406 (15)0.0120 (13)
C240.105 (3)0.069 (2)0.067 (2)0.002 (2)0.049 (2)0.0249 (17)
C250.115 (3)0.092 (3)0.0427 (18)0.014 (2)0.019 (2)0.0130 (18)
C260.096 (3)0.079 (2)0.0438 (18)0.004 (2)−0.0042 (18)0.0103 (16)
C270.0437 (15)0.0467 (15)0.0489 (16)−0.0047 (11)0.0006 (12)0.0152 (12)

Geometric parameters (Å, °)

O11—C111.431 (3)C161—H1620.9900
O11—H110.8400C162—C171.343 (15)
O12—C121.431 (3)C162—H1630.9900
O12—H120.8400C162—H1640.9900
O21—C211.434 (3)C17—H1710.9900
O21—H210.8400C17—H1720.9900
O22—C221.431 (3)C21—C221.518 (3)
O22—H220.8400C21—C271.520 (3)
C11—C171.515 (3)C21—H2111.0000
C11—C121.523 (3)C22—C231.519 (3)
C11—H1111.0000C22—H2211.0000
C12—C131.518 (3)C23—C241.573 (5)
C12—H1211.0000C23—H2310.9900
C13—C141.503 (5)C23—H2320.9900
C13—H1310.9900C24—C251.498 (5)
C13—H1320.9900C24—H2410.9900
C14—C151.447 (6)C24—H2420.9900
C14—H1410.9900C25—C261.480 (6)
C14—H1420.9900C25—H2510.9900
C15—C1611.459 (6)C25—H2520.9900
C15—C1621.609 (17)C26—C271.501 (4)
C15—H1510.9900C26—H2610.9900
C15—H1520.9900C26—H2620.9900
C161—C171.611 (6)C27—H2710.9900
C161—H1610.9900C27—H2720.9900
?···??
C11—O11—H11109.5C162—C17—C16143.2 (8)
C12—O12—H12109.5C11—C17—C161113.6 (3)
C21—O21—H21109.5C162—C17—H17165.7
C22—O22—H22109.5C11—C17—H171108.8
O11—C11—C17107.3 (2)C161—C17—H171108.8
O11—C11—C12110.63 (19)C162—C17—H172120.6
C17—C11—C12115.3 (2)C11—C17—H172108.8
O11—C11—H111107.8C161—C17—H172108.8
C17—C11—H111107.8H171—C17—H172107.7
C12—C11—H111107.8O21—C21—C22108.75 (19)
O12—C12—C13106.8 (2)O21—C21—C27107.1 (2)
O12—C12—C11108.94 (19)C22—C21—C27114.1 (2)
C13—C12—C11114.6 (2)O21—C21—H211108.9
O12—C12—H121108.8C22—C21—H211108.9
C13—C12—H121108.8C27—C21—H211108.9
C11—C12—H121108.8O22—C22—C21110.90 (18)
C14—C13—C12115.8 (3)O22—C22—C23107.6 (2)
C14—C13—H131108.3C21—C22—C23115.3 (2)
C12—C13—H131108.3O22—C22—H221107.6
C14—C13—H132108.3C21—C22—H221107.6
C12—C13—H132108.3C23—C22—H221107.6
H131—C13—H132107.4C22—C23—C24115.2 (2)
C15—C14—C13120.0 (3)C22—C23—H231108.5
C15—C14—H141107.3C24—C23—H231108.5
C13—C14—H141107.3C22—C23—H232108.5
C15—C14—H142107.3C24—C23—H232108.5
C13—C14—H142107.3H231—C23—H232107.5
H141—C14—H142106.9C25—C24—C23115.1 (3)
C14—C15—C161117.2 (4)C25—C24—H241108.5
C14—C15—C162130.3 (6)C23—C24—H241108.5
C161—C15—C16242.3 (7)C25—C24—H242108.5
C14—C15—H151108.0C23—C24—H242108.5
C161—C15—H151108.0H241—C24—H242107.5
C162—C15—H151121.1C26—C25—C24116.5 (3)
C14—C15—H152108.0C26—C25—H251108.2
C161—C15—H152108.0C24—C25—H251108.2
C162—C15—H15265.7C26—C25—H252108.2
H151—C15—H152107.2C24—C25—H252108.2
C15—C161—C17115.2 (4)H251—C25—H252107.3
C15—C161—H161108.5C25—C26—C27117.4 (3)
C17—C161—H161108.5C25—C26—H261108.0
C15—C161—H162108.5C27—C26—H261108.0
C17—C161—H162108.5C25—C26—H262108.0
H161—C161—H162107.5C27—C26—H262108.0
C17—C162—C15122.7 (11)H261—C26—H262107.2
C17—C162—H163106.7C26—C27—C21115.9 (3)
C15—C162—H163106.7C26—C27—H271108.3
C17—C162—H164106.7C21—C27—H271108.3
C15—C162—H164106.7C26—C27—H272108.3
H163—C162—H164106.6C21—C27—H272108.3
C162—C17—C11129.7 (8)H271—C27—H272107.4
O11—C11—C12—O12−66.4 (2)O11—C11—C17—C161−69.0 (3)
C17—C11—C12—O12171.6 (2)C12—C11—C17—C16154.7 (3)
O11—C11—C12—C1353.2 (3)C15—C161—C17—C16249.7 (11)
C17—C11—C12—C13−68.8 (3)C15—C161—C17—C11−73.9 (4)
O12—C12—C13—C14−155.2 (3)O21—C21—C22—O22−66.9 (2)
C11—C12—C13—C1484.1 (3)C27—C21—C22—O2252.5 (3)
C12—C13—C14—C15−45.7 (5)O21—C21—C22—C23170.5 (2)
C13—C14—C15—C161−28.3 (7)C27—C21—C22—C23−70.1 (3)
C13—C14—C15—C16220.8 (13)O22—C22—C23—C24−73.0 (3)
C14—C15—C161—C1780.7 (6)C21—C22—C23—C2451.3 (3)
C162—C15—C161—C17−40.4 (8)C22—C23—C24—C25−69.2 (4)
C14—C15—C162—C17−31 (2)C23—C24—C25—C2684.1 (4)
C161—C15—C162—C1756.6 (14)C24—C25—C26—C27−36.0 (5)
C15—C162—C17—C1135 (2)C25—C26—C27—C21−40.9 (4)
C15—C162—C17—C161−48.0 (11)O21—C21—C27—C26−152.3 (2)
O11—C11—C17—C162−116.9 (12)C22—C21—C27—C2687.4 (3)
C12—C11—C17—C1626.9 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.841.922.697 (2)154
O12—H12···O220.841.902.733 (2)173
O21—H21···O11ii0.841.882.720 (2)178
O22—H22···O21iii0.841.912.699 (2)156

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2506).

References

  • Becker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum – Organisch-chemisches Grundpraktikum. Weinheim, Germany: Wiley–VCH.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4129.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sillanpää, R., Leskelä, M. & Hiltunen, L. (1984). Acta Chem. Scand. Ser. B, 38, 249–254.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography