PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1602–m1603.
Published online 2009 November 18. doi:  10.1107/S1600536809048090
PMCID: PMC2971969

Chlorido(dimethyl sulfoxide-κO)triphenyl­tin(IV)

Abstract

In the title compound, [Sn(C6H5)3Cl(C2H6OS)], the SnIV atom is coordinated by three phenyl groups, a chloride ion and a dimethyl sulfoxide mol­ecule in a distorted trigonal-bipyramidal geometry. In the crystal, adjacent mol­ecules are linked through inter­molecular C—H(...)Cl hydrogen bonds, weak C—H(...)π inter­actions and π–π inter­actions [centroid–centroid distance = 3.934 (3) Å. An intra­molecular C—H(...)π inter­action is also observed.

Related literature

For general background to the biological activity and industrial applications of triorganotin(IV) complexes, see: Willem et al. (1997 [triangle]); Gielen et al. (2000 [triangle]); Tian et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For some unusual examples of [Sn(C6H5)3(C16H10NO3)(C2H6O)] adducts with oxygen-donor ligands, see: Lo & Ng (2009 [triangle]); Ng & Kumar Das (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1602-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3Cl(C2H6OS)]
  • M r = 463.57
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1602-efi1.jpg
  • a = 10.417 (5) Å
  • b = 13.235 (5) Å
  • c = 14.302 (5) Å
  • V = 1971.8 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.54 mm−1
  • T = 293 K
  • 0.26 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.677, T max = 0.712
  • 11203 measured reflections
  • 4052 independent reflections
  • 3877 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.15
  • 4052 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 1.18 e Å−3
  • Δρmin = −0.86 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1732 Friedel pairs
  • Flack parameter: −0.07 (3)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048090/is2466sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048090/is2466Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SMS is grateful to the Council of Science and Technology, UP (CST, UP), India, for providing grants under the Young Scientists Scheme [ref No. CST/SERPD/D-3505.2008].

supplementary crystallographic information

Comment

Triorganotin(IV) complexes are well known for their biological activities as well as industrial applications (Willem et al., 1997; Gielen et al., 2000; Tian et al., 2005). Owing to wide spread applications of organotin compounds, their synthesis and characterization with O–containing ligands have been a continuing subject in recent years (Lo & Ng, 2009, Ng & Kumar Das, 1997). There are very rare examples of the triorganotin(IV) complexes with solvent molecules (Lo & Ng, 2009), in which solvent molecule acts as a chelator ligand.

The bond lengths and bond angles in the molecules are within normal ranges (Allen et al. 1987). The SnIV atom is coordinated by three phenyl groups, one chloride ion and one solvent molecule (DMSO) in a distorted trigonal biyramidal geometry (Fig. 1). The three phenyl groups are attached in a plane to the Sn atom and seemed like as three pedal of ceiling fan. The one chloride and one solvent molecule are located at axial positions and three phenyl groups are located at equatorial positions. Each phenyl group of the one compound is interacted with another phenyl group of another molecule by a π–π interaction and further interacted by a C—H···π interaction. The neighboring molecules are bound by C—H···Cl, C—H···π (Table 2) and a π–π interaction with a centroid-centroid distance of 3.934 (3) Å (Fig. 2).

Experimental

Triphenyltinchloride (0.385 g, 1 mmol) was dissolved in DMSO (4 ml) and heated until the reactant dissolved completely. The solution was filtered and solvent allowed evaporating slowly. Fine colorless crystal produced after 3 days. Crystals are stable at room temperature. Analysis calc. for C20H21SOClSn: C 51.81, H 4.57, S 6.92. Found: C 51.68, H 4.56, S 6.95.

Refinement

All of the hydrogen atoms were placed in calculated positions (C–H = 0.93 or 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The highest residual electron density peak is located 0.87 Å from atom Sn1. The Hooft parameter value is -0.045 (17).

Figures

Fig. 1.
An ORTEP diagram of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-hydrogen atoms.
Fig. 2.
In the packing diagram, molecules are bounded by weak intermolecular weak hydrogen bonds.

Crystal data

[Sn(C6H5)3Cl(C2H6OS)]F(000) = 928
Mr = 463.57Dx = 1.562 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 6343 reflections
a = 10.417 (5) Åθ = 2.4–28.3°
b = 13.235 (5) ŵ = 1.54 mm1
c = 14.302 (5) ÅT = 293 K
V = 1971.8 (14) Å3Prism, colorless
Z = 40.26 × 0.24 × 0.22 mm

Data collection

Bruker SMART CCD diffractometer4052 independent reflections
Radiation source: fine-focus sealed tube3877 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −13→12
Tmin = 0.677, Tmax = 0.712k = −16→15
11203 measured reflectionsl = −15→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.0344P)2 + 2.3774P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
4052 reflectionsΔρmax = 1.18 e Å3
217 parametersΔρmin = −0.86 e Å3
0 restraintsAbsolute structure: Flack (1983), 1732 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.07 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.65650 (3)0.90124 (2)0.76810 (2)0.01581 (9)
Cl10.70946 (11)1.06792 (8)0.69548 (9)0.0215 (2)
S10.60492 (11)0.71709 (9)0.93706 (8)0.0203 (2)
O10.6043 (3)0.7472 (2)0.8339 (2)0.0212 (7)
C170.5280 (5)1.0132 (4)1.0442 (4)0.0253 (11)
H170.55861.01121.10530.030*
C140.4365 (4)1.0183 (4)0.8606 (4)0.0227 (10)
H140.40601.02030.79950.027*
C31.0216 (5)0.7334 (4)0.7804 (3)0.0295 (12)
H31.04610.66620.77350.035*
C20.8928 (5)0.7602 (4)0.7732 (4)0.0246 (10)
H20.83190.71040.76140.030*
C90.3759 (5)0.7531 (4)0.5849 (4)0.0287 (12)
H90.30230.71440.59390.034*
C180.5971 (5)0.9694 (3)0.9717 (3)0.0211 (10)
H180.67510.93840.98510.025*
C130.5538 (4)0.9702 (3)0.8800 (3)0.0179 (9)
C120.5932 (5)0.8685 (4)0.5590 (3)0.0198 (10)
H120.66610.90780.54970.024*
C80.4438 (4)0.7872 (4)0.6612 (4)0.0227 (10)
H80.41630.77050.72110.027*
C70.5534 (4)0.8467 (3)0.6496 (3)0.0185 (10)
C190.6133 (5)0.5836 (4)0.9315 (4)0.0279 (11)
H19A0.69750.56360.91140.042*
H19B0.55060.55900.88780.042*
H19C0.59630.55570.99220.042*
C100.4154 (5)0.7756 (4)0.4954 (4)0.0256 (11)
H100.36870.75270.44430.031*
C200.4428 (5)0.7303 (4)0.9743 (4)0.0265 (11)
H20A0.42260.80070.98090.040*
H20B0.43160.69691.03330.040*
H20C0.38680.70040.92870.040*
C110.5260 (5)0.8328 (4)0.4823 (4)0.0249 (11)
H110.55470.84700.42210.030*
C41.1127 (5)0.8061 (4)0.7976 (4)0.0310 (12)
H41.19880.78830.80230.037*
C60.9465 (4)0.9331 (4)0.8018 (4)0.0233 (10)
H60.92231.00020.81010.028*
C10.8536 (4)0.8603 (3)0.7833 (3)0.0187 (9)
C160.4115 (5)1.0605 (4)1.0232 (4)0.0262 (11)
H160.36401.09061.07060.031*
C51.0761 (5)0.9062 (5)0.8081 (4)0.0313 (12)
H51.13780.95560.81920.038*
C150.3661 (5)1.0628 (4)0.9314 (4)0.0293 (12)
H150.28841.09420.91790.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01343 (14)0.01702 (14)0.01697 (15)0.00044 (12)0.00008 (12)0.00061 (12)
Cl10.0183 (5)0.0193 (5)0.0268 (6)−0.0005 (4)−0.0006 (5)0.0046 (4)
S10.0192 (5)0.0212 (6)0.0205 (6)−0.0035 (5)−0.0025 (5)0.0022 (5)
O10.0262 (16)0.0221 (17)0.0152 (16)0.0020 (14)0.0026 (14)0.0018 (13)
C170.033 (3)0.023 (2)0.020 (3)−0.004 (2)0.003 (2)−0.001 (2)
C140.018 (2)0.025 (2)0.025 (3)0.002 (2)0.000 (2)−0.001 (2)
C30.030 (3)0.039 (3)0.020 (3)0.020 (2)0.000 (2)−0.007 (2)
C20.022 (2)0.028 (2)0.025 (2)0.0069 (19)−0.004 (2)−0.002 (2)
C90.020 (3)0.026 (3)0.040 (3)−0.002 (2)−0.006 (2)−0.006 (2)
C180.021 (2)0.014 (2)0.029 (3)−0.0012 (19)0.000 (2)−0.001 (2)
C130.018 (2)0.019 (2)0.017 (2)−0.0021 (19)0.0027 (19)−0.0019 (18)
C120.021 (2)0.023 (2)0.015 (2)−0.0004 (19)0.0012 (19)−0.0036 (18)
C80.017 (2)0.025 (2)0.026 (3)−0.002 (2)0.001 (2)0.000 (2)
C70.016 (2)0.018 (2)0.022 (2)0.0074 (18)−0.0002 (19)0.0010 (19)
C190.035 (3)0.020 (3)0.028 (3)0.004 (2)−0.004 (2)0.006 (2)
C100.029 (3)0.025 (3)0.024 (3)0.005 (2)−0.009 (2)−0.008 (2)
C200.027 (3)0.036 (3)0.017 (2)−0.007 (2)0.002 (2)0.002 (2)
C110.033 (3)0.022 (2)0.020 (2)0.006 (2)0.003 (2)0.0051 (19)
C40.021 (2)0.052 (3)0.020 (2)0.012 (2)0.001 (2)0.004 (2)
C60.017 (2)0.029 (3)0.024 (2)0.0002 (19)−0.001 (2)0.003 (2)
C10.015 (2)0.025 (2)0.016 (2)0.0042 (18)−0.001 (2)0.0016 (17)
C160.024 (3)0.029 (3)0.025 (3)−0.005 (2)0.005 (2)−0.011 (2)
C50.018 (2)0.046 (3)0.029 (3)−0.001 (2)0.003 (2)0.010 (3)
C150.017 (3)0.033 (3)0.038 (3)0.002 (2)0.003 (2)−0.005 (2)

Geometric parameters (Å, °)

Sn1—Cl12.4999 (14)C12—C111.384 (7)
Sn1—O12.311 (3)C12—C71.391 (7)
Sn1—C12.134 (5)C12—H120.9300
Sn1—C72.132 (5)C8—C71.397 (7)
Sn1—C132.131 (5)C8—H80.9300
S1—O11.529 (3)C19—H19A0.9600
S1—C191.771 (5)C19—H19B0.9600
S1—C201.779 (5)C19—H19C0.9600
C17—C181.389 (7)C10—C111.391 (7)
C17—C161.399 (8)C10—H100.9300
C17—H170.9300C20—H20A0.9600
C14—C151.382 (7)C20—H20B0.9600
C14—C131.405 (7)C20—H20C0.9600
C14—H140.9300C11—H110.9300
C3—C41.374 (8)C4—C51.387 (8)
C3—C21.391 (7)C4—H40.9300
C3—H30.9300C6—C11.392 (7)
C2—C11.394 (6)C6—C51.398 (7)
C2—H20.9300C6—H60.9300
C9—C101.377 (8)C16—C151.395 (8)
C9—C81.376 (7)C16—H160.9300
C9—H90.9300C5—H50.9300
C18—C131.387 (7)C15—H150.9300
C18—H180.9300
C13—Sn1—C7119.29 (18)C7—C8—H8119.6
C13—Sn1—C1121.03 (17)C12—C7—C8118.1 (4)
C7—Sn1—C1118.63 (17)C12—C7—Sn1121.4 (3)
C13—Sn1—O187.39 (15)C8—C7—Sn1120.6 (4)
C7—Sn1—O184.62 (15)S1—C19—H19A109.5
C1—Sn1—O187.74 (15)S1—C19—H19B109.5
C13—Sn1—Cl192.56 (13)H19A—C19—H19B109.5
C7—Sn1—Cl194.58 (13)S1—C19—H19C109.5
C1—Sn1—Cl193.10 (12)H19A—C19—H19C109.5
O1—Sn1—Cl1179.04 (9)H19B—C19—H19C109.5
O1—S1—C19102.5 (2)C9—C10—C11119.4 (5)
O1—S1—C20105.1 (2)C9—C10—H10120.3
C19—S1—C2099.1 (3)C11—C10—H10120.3
S1—O1—Sn1128.46 (19)S1—C20—H20A109.5
C18—C17—C16118.4 (5)S1—C20—H20B109.5
C18—C17—H17120.8H20A—C20—H20B109.5
C16—C17—H17120.8S1—C20—H20C109.5
C15—C14—C13120.7 (5)H20A—C20—H20C109.5
C15—C14—H14119.7H20B—C20—H20C109.5
C13—C14—H14119.7C12—C11—C10119.8 (5)
C4—C3—C2120.1 (5)C12—C11—H11120.1
C4—C3—H3120.0C10—C11—H11120.1
C2—C3—H3120.0C3—C4—C5119.9 (5)
C3—C2—C1121.2 (5)C3—C4—H4120.1
C3—C2—H2119.4C5—C4—H4120.1
C1—C2—H2119.4C1—C6—C5120.5 (5)
C10—C9—C8120.8 (5)C1—C6—H6119.8
C10—C9—H9119.6C5—C6—H6119.8
C8—C9—H9119.6C6—C1—C2118.3 (4)
C13—C18—C17122.3 (5)C6—C1—Sn1120.8 (3)
C13—C18—H18118.8C2—C1—Sn1120.9 (3)
C17—C18—H18118.8C15—C16—C17120.4 (5)
C18—C13—C14118.2 (4)C15—C16—H16119.8
C18—C13—Sn1122.9 (3)C17—C16—H16119.8
C14—C13—Sn1118.9 (3)C4—C5—C6120.1 (5)
C11—C12—C7121.1 (5)C4—C5—H5119.9
C11—C12—H12119.4C6—C5—H5119.9
C7—C12—H12119.4C14—C15—C16120.0 (5)
C9—C8—C7120.7 (5)C14—C15—H15120.0
C9—C8—H8119.6C16—C15—H15120.0
C19—S1—O1—Sn1−159.5 (3)Cl1—Sn1—C7—C1237.2 (4)
C20—S1—O1—Sn197.4 (3)C13—Sn1—C7—C8−47.5 (4)
C13—Sn1—O1—S1−41.8 (3)C1—Sn1—C7—C8120.9 (4)
C7—Sn1—O1—S1−161.5 (3)O1—Sn1—C7—C836.4 (4)
C1—Sn1—O1—S179.4 (3)Cl1—Sn1—C7—C8−143.1 (4)
C4—C3—C2—C1−0.1 (8)C8—C9—C10—C110.5 (8)
C16—C17—C18—C13−0.6 (7)C7—C12—C11—C101.2 (7)
C17—C18—C13—C140.7 (7)C9—C10—C11—C12−1.5 (7)
C17—C18—C13—Sn1−178.9 (4)C2—C3—C4—C50.2 (8)
C15—C14—C13—C18−0.5 (7)C5—C6—C1—C21.4 (7)
C15—C14—C13—Sn1179.1 (4)C5—C6—C1—Sn1−177.5 (4)
C7—Sn1—C13—C18152.0 (4)C3—C2—C1—C6−0.7 (8)
C1—Sn1—C13—C18−16.1 (5)C3—C2—C1—Sn1178.2 (4)
O1—Sn1—C13—C1869.7 (4)C13—Sn1—C1—C6−61.1 (4)
Cl1—Sn1—C13—C18−111.3 (4)C7—Sn1—C1—C6130.6 (4)
C7—Sn1—C13—C14−27.5 (4)O1—Sn1—C1—C6−146.7 (4)
C1—Sn1—C13—C14164.3 (3)Cl1—Sn1—C1—C633.7 (4)
O1—Sn1—C13—C14−109.9 (4)C13—Sn1—C1—C2120.0 (4)
Cl1—Sn1—C13—C1469.2 (4)C7—Sn1—C1—C2−48.2 (4)
C10—C9—C8—C70.9 (8)O1—Sn1—C1—C234.4 (4)
C11—C12—C7—C80.2 (7)Cl1—Sn1—C1—C2−145.1 (4)
C11—C12—C7—Sn1179.9 (4)C18—C17—C16—C150.3 (8)
C9—C8—C7—C12−1.3 (7)C3—C4—C5—C60.5 (8)
C9—C8—C7—Sn1179.0 (4)C1—C6—C5—C4−1.3 (8)
C13—Sn1—C7—C12132.8 (4)C13—C14—C15—C160.2 (8)
C1—Sn1—C7—C12−58.8 (4)C17—C16—C15—C14−0.2 (8)
O1—Sn1—C7—C12−143.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H20C···Cl1i0.962.693.610 (6)161
C20—H20A···Cg30.962.943.813 (6)151
C20—H20B···Cg1ii0.962.613.490 (6)153

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2466).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gielen, M., Biesemans, M., Vos, D. D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139–145. [PubMed]
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m489. [PMC free article] [PubMed]
  • Ng, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem 2, 107–115.
  • Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem 99, 1646–1652. [PubMed]
  • Willem, R., Bunhdid, A., Mahieu, B., Ghys, L., Biesemans, M., Tiekink, E. R. T., Vos, D. D. & Gielen, M. (1997). J. Organomet. Chem 531, 151–158.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography