PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1507–m1508.
Published online 2009 November 4. doi:  10.1107/S1600536809045565
PMCID: PMC2971966

Di-μ-chlorido-bis­(chlorido{2,2′-[3-(1H-imidazol-4-ylmeth­yl)-3-aza­pentane-1,5-di­yl]diphthalimide}copper(II))

Abstract

The centrosymmetric dinuclear CuII complex, [Cu2Cl4(C24H21N5O4)2], was synthesized by the reaction of CuCl2·2H2O with the tripodal ligand 2,2′-[3-(1H-imid­azol-4-ylmeth­yl)-3-aza­pentane-1,5-di­yl]diphthalimide (L). Each of the CuII ions is coordinated by two N atoms from the ligand, two bridging Cl atoms and one terminal Cl atom. The CuII coordination can be best be described as a transition state between four- and five-coordination, since one of the bridging Cl atoms has a much longer Cu—Cl bond distance [2.7069 (13) Å] than the other [2.2630 (12) Å]. In addition, the Cu(...)Cu distance is 3.622 (1) Å. The three-dimensional structrure is generated by N—H(...)O, C—H(...)O and C—H(...)Cl hydrogen bonds and π–π inter­actions [centroid–centroid distances = 3.658 (4) and 4.020 (4) Å].

Related literature

For the synthesis, see: Qi et al. (2008 [triangle]). For the use of imidazole-containing tripodal ligands in supra­molecular chemistry and new functional materials, see: Higa et al. (2007 [triangle]); Kong et al. (2005 [triangle]); Katsuki et al. (2002 [triangle]). For a related structure with a similar coordination geometry around the metal atom, see: Yu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1507-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C24H21N5O4)2]
  • M r = 1155.80
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1507-efi1.jpg
  • a = 8.4351 (9) Å
  • b = 14.6867 (16) Å
  • c = 20.1448 (19) Å
  • β = 105.593 (4)°
  • V = 2403.8 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 293 K
  • 0.2 × 0.1 × 0.1 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.86, T max = 0.89
  • 11745 measured reflections
  • 4218 independent reflections
  • 3394 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.150
  • S = 1.17
  • 4218 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045565/kp2236sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045565/kp2236Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Project of Huangshan University (2008xkjq020).

supplementary crystallographic information

Comment

In recent years, imidazole-containing tripodal ligands have attracted much attention for their extensive use in supramolecular chemistry and new functional materials (Higa, et al., 2007; Kong et al., 2005; Katsuki,et al., 2002). Here, we synthesized a new tripodal ligand L, 3-(imidazole-4-yl-methyl)-1,5-diphthalimido-3-azapentane, and reported its CuII complex.

In this complex, the CuII ion is coordinated by two N atoms from the ligand, two bridging Cl atoms and one terminal Cl atom. The two bridging Cl atoms are quite different, the equatorial Cl atom exbits a Cu—Cl distance of 2.2630 (12) Å, while that of the axial Cl atom is much longer with 2.7069 (13) Å (Table 1). Thus, the CuII coordination can be better described as a transition state between 4 and 5 coordination. In addition, the Cu—Cu distance is about 3.622 Å. A dimer of two monomeric units bridged by two chlorido ions reveals an inversion centre in the middle of the molecule (Fig. 1). The dimers are further connected to form the three-dimensional packing by N—H···O, C—H···O, C—H···Cl hydrogen-bonds and π–π interactions involving neighbouring phthalamide rings [Cg1···Cg2(-x+2,y+1/2,-z+1/2) = 3.658 (4) and Cg1···Cg3(-x+1,y+1/2,-z+1/2 = 4.020 (4) Å where Cg1, Cg2 and Cg2 are the centroids of the N5/C17/C18/C23/C24, C18–C23 and N4/C7/C8/C13/C14 rings, respectively (Fig. 2)].

Experimental

The tripodal ligand L, 3-(imidazole-4-yl-methyl)-1,5-diphthalimido-3-azapentane, was synthesized by a literature method (Qi et al., 2008). The title complex was synthesized as follows: a methanol solution (3 ml) of L (36.3 mg, 0.1 mmol) was added to a CH3CN solution (2 ml) of CuCl2.2H2O (17.0 mg, 0.1 mmol). Green crystals were obtained by slow evaporation of the solution in air for several days.

Refinement

All H atoms were refined using a riding model. C—H values were set to 0.93 to 0.97 Å with Uiso(H) = 1.2 Ueq(C), and N—H values were set to 0.86 Å with Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) with atom labelling and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The three-dimensional packing of (I) viewed down the b axisrealized by N—H···O, C—H···O, C—H···Cl hydrogen-bonds (dashed lines) and π–π ...

Crystal data

[Cu2Cl4(C24H21N5O4)2]F(000) = 1180
Mr = 1155.80Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1643 reflections
a = 8.4351 (9) Åθ = 2.5–21.3°
b = 14.6867 (16) ŵ = 1.17 mm1
c = 20.1448 (19) ÅT = 293 K
β = 105.593 (4)°Block, green
V = 2403.8 (4) Å30.2 × 0.1 × 0.1 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer4218 independent reflections
Radiation source: fine-focus sealed tube3394 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.86, Tmax = 0.89k = −17→9
11745 measured reflectionsl = −22→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.17w = 1/[σ2(Fo2) + (0.0656P)2 + 0.075P] where P = (Fo2 + 2Fc2)/3
4218 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.30 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.93018 (7)0.11519 (4)0.50753 (3)0.0346 (2)
Cl11.12292 (17)0.19333 (11)0.58499 (8)0.0620 (4)
Cl20.89142 (14)−0.05739 (8)0.54767 (6)0.0369 (3)
O10.7721 (7)0.4237 (3)0.4369 (2)0.0851 (15)
O20.9233 (5)0.2868 (3)0.26250 (19)0.0620 (11)
O30.6332 (6)0.1249 (3)0.1982 (2)0.0799 (14)
O40.5644 (5)−0.1647 (3)0.2630 (2)0.0696 (12)
N10.7125 (5)0.1113 (2)0.41720 (19)0.0331 (9)
N20.7596 (5)0.1576 (3)0.54753 (19)0.0371 (9)
N30.5988 (6)0.2086 (3)0.6073 (2)0.0573 (13)
H3A0.56700.23390.64000.069*
N40.8396 (5)0.3347 (3)0.3553 (2)0.0426 (10)
N50.6000 (5)−0.0116 (3)0.2470 (2)0.0445 (10)
C10.5748 (6)0.0876 (3)0.4473 (2)0.0372 (11)
H1A0.47040.10490.41580.045*
H1B0.57330.02250.45530.045*
C20.6000 (6)0.1372 (3)0.5129 (3)0.0374 (12)
C30.4990 (7)0.1690 (4)0.5504 (3)0.0496 (14)
H3B0.38490.16450.53920.060*
C40.7537 (7)0.2019 (4)0.6041 (3)0.0517 (14)
H4A0.84460.22500.63680.062*
C50.6910 (6)0.2056 (3)0.3885 (3)0.0395 (12)
H5A0.63330.24230.41460.047*
H5B0.62480.20370.34100.047*
C60.8551 (6)0.2485 (3)0.3918 (3)0.0489 (14)
H6A0.91440.25820.43960.059*
H6B0.91930.20690.37200.059*
C70.8081 (7)0.4161 (4)0.3837 (3)0.0510 (14)
C80.8283 (6)0.4883 (3)0.3344 (2)0.0424 (12)
C90.8152 (8)0.5819 (4)0.3369 (3)0.0586 (16)
H9A0.78580.61070.37300.070*
C100.8480 (8)0.6310 (4)0.2832 (3)0.0598 (16)
H10A0.84190.69420.28350.072*
C110.8889 (7)0.5882 (4)0.2298 (3)0.0557 (15)
H11A0.90830.62320.19430.067*
C120.9023 (7)0.4950 (4)0.2270 (3)0.0484 (13)
H12A0.93060.46640.19060.058*
C130.8722 (6)0.4459 (3)0.2804 (3)0.0410 (12)
C140.8824 (6)0.3467 (3)0.2942 (3)0.0412 (12)
C150.7243 (6)0.0443 (3)0.3632 (2)0.0383 (12)
H15A0.7659−0.01260.38570.046*
H15B0.80460.06650.34050.046*
C160.5645 (6)0.0249 (4)0.3085 (3)0.0477 (13)
H16A0.4994−0.01860.32610.057*
H16B0.50130.08060.29710.057*
C170.6355 (7)0.0435 (4)0.1965 (3)0.0555 (15)
C180.6740 (7)−0.0193 (4)0.1452 (3)0.0559 (15)
C190.7175 (9)−0.0007 (5)0.0860 (3)0.083 (2)
H19A0.72530.05870.07110.099*
C200.7496 (10)−0.0755 (7)0.0492 (3)0.089 (2)
H20A0.7801−0.06590.00860.107*
C210.7373 (8)−0.1627 (6)0.0710 (4)0.075 (2)
H21A0.7602−0.21120.04540.090*
C220.6916 (7)−0.1796 (5)0.1305 (3)0.0638 (17)
H22A0.6835−0.23900.14530.077*
C230.6583 (7)−0.1073 (4)0.1675 (3)0.0506 (14)
C240.6043 (7)−0.1033 (4)0.2314 (3)0.0504 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0370 (4)0.0344 (4)0.0361 (4)0.0013 (3)0.0159 (3)−0.0045 (3)
Cl10.0480 (8)0.0709 (11)0.0690 (10)−0.0078 (7)0.0189 (7)−0.0349 (8)
Cl20.0405 (7)0.0386 (7)0.0359 (7)0.0054 (5)0.0173 (5)0.0011 (5)
O10.145 (5)0.064 (3)0.068 (3)0.003 (3)0.067 (3)0.005 (2)
O20.099 (3)0.039 (2)0.054 (2)0.013 (2)0.031 (2)−0.0029 (19)
O30.123 (4)0.044 (3)0.076 (3)−0.005 (3)0.031 (3)0.005 (2)
O40.094 (3)0.056 (3)0.063 (3)−0.016 (2)0.029 (2)0.002 (2)
N10.040 (2)0.030 (2)0.034 (2)0.0029 (17)0.0180 (18)0.0043 (17)
N20.038 (2)0.043 (2)0.034 (2)0.0052 (19)0.0167 (19)−0.0045 (19)
N30.067 (3)0.064 (3)0.050 (3)0.016 (3)0.031 (3)−0.010 (2)
N40.055 (3)0.028 (2)0.048 (3)−0.001 (2)0.021 (2)0.008 (2)
N50.059 (3)0.039 (3)0.034 (2)−0.007 (2)0.011 (2)−0.004 (2)
C10.036 (3)0.036 (3)0.042 (3)−0.007 (2)0.014 (2)0.005 (2)
C20.044 (3)0.034 (3)0.042 (3)0.004 (2)0.024 (2)0.007 (2)
C30.049 (3)0.052 (4)0.055 (4)0.010 (3)0.025 (3)0.007 (3)
C40.058 (4)0.056 (4)0.044 (3)0.006 (3)0.018 (3)−0.011 (3)
C50.046 (3)0.036 (3)0.040 (3)0.006 (2)0.019 (2)0.005 (2)
C60.052 (3)0.036 (3)0.058 (4)0.000 (2)0.014 (3)0.016 (3)
C70.066 (4)0.046 (3)0.047 (3)0.000 (3)0.026 (3)0.009 (3)
C80.056 (3)0.034 (3)0.041 (3)0.000 (2)0.019 (3)0.002 (2)
C90.093 (5)0.035 (3)0.053 (4)−0.007 (3)0.028 (3)−0.006 (3)
C100.088 (5)0.027 (3)0.066 (4)−0.009 (3)0.023 (4)0.003 (3)
C110.074 (4)0.045 (4)0.053 (4)−0.008 (3)0.024 (3)0.015 (3)
C120.068 (4)0.042 (3)0.041 (3)−0.005 (3)0.026 (3)0.005 (3)
C130.053 (3)0.028 (3)0.043 (3)−0.006 (2)0.015 (2)0.001 (2)
C140.056 (3)0.032 (3)0.036 (3)0.000 (2)0.013 (2)0.001 (2)
C150.045 (3)0.034 (3)0.040 (3)−0.001 (2)0.018 (2)−0.006 (2)
C160.047 (3)0.053 (4)0.043 (3)0.000 (3)0.012 (2)−0.006 (3)
C170.067 (4)0.046 (4)0.048 (3)−0.001 (3)0.006 (3)0.003 (3)
C180.066 (4)0.062 (4)0.038 (3)−0.005 (3)0.011 (3)−0.004 (3)
C190.118 (6)0.080 (5)0.058 (4)−0.005 (5)0.037 (4)0.010 (4)
C200.107 (6)0.123 (7)0.044 (4)−0.010 (5)0.033 (4)−0.012 (5)
C210.066 (4)0.097 (6)0.066 (5)−0.009 (4)0.023 (4)−0.031 (4)
C220.057 (4)0.065 (4)0.063 (4)−0.007 (3)0.005 (3)−0.018 (3)
C230.051 (3)0.049 (4)0.047 (3)−0.005 (3)0.005 (3)−0.008 (3)
C240.055 (3)0.052 (4)0.041 (3)−0.009 (3)0.008 (3)−0.006 (3)

Geometric parameters (Å, °)

Cu1—N21.932 (4)C5—H5B0.9700
Cu1—N12.211 (4)C6—H6A0.9700
Cu1—Cl12.2431 (15)C6—H6B0.9700
Cu1—Cl2i2.2630 (12)C7—C81.493 (7)
Cu1—Cl22.7069 (13)C8—C91.382 (7)
Cl2—Cu1i2.2630 (12)C8—C131.386 (7)
O1—C71.196 (6)C9—C101.389 (8)
O2—C141.192 (6)C9—H9A0.9300
O3—C171.198 (6)C10—C111.368 (8)
O4—C241.202 (6)C10—H10A0.9300
N1—C11.489 (5)C11—C121.376 (7)
N1—C151.489 (5)C11—H11A0.9300
N1—C51.492 (6)C12—C131.375 (6)
N2—C41.325 (6)C12—H12A0.9300
N2—C21.373 (6)C13—C141.481 (7)
N3—C41.329 (6)C15—C161.522 (7)
N3—C31.358 (7)C15—H15A0.9700
N3—H3A0.8600C15—H15B0.9700
N4—C71.382 (7)C16—H16A0.9700
N4—C141.383 (6)C16—H16B0.9700
N4—C61.452 (6)C17—C181.485 (8)
N5—C241.385 (7)C18—C191.366 (7)
N5—C171.392 (7)C18—C231.387 (8)
N5—C161.453 (6)C19—C201.393 (10)
C1—C21.472 (7)C19—H19A0.9300
C1—H1A0.9700C20—C211.367 (10)
C1—H1B0.9700C20—H20A0.9300
C2—C31.364 (6)C21—C221.377 (8)
C3—H3B0.9300C21—H21A0.9300
C4—H4A0.9300C22—C231.368 (8)
C5—C61.506 (6)C22—H22A0.9300
C5—H5A0.9700C23—C241.479 (7)
N2—Cu1—N178.75 (15)N4—C7—C8105.7 (4)
N2—Cu1—Cl191.52 (13)C9—C8—C13121.1 (5)
N1—Cu1—Cl1150.69 (11)C9—C8—C7131.1 (5)
N2—Cu1—Cl2i173.87 (13)C13—C8—C7107.8 (5)
N1—Cu1—Cl2i95.78 (10)C8—C9—C10116.9 (5)
Cl1—Cu1—Cl2i94.61 (5)C8—C9—H9A121.5
N2—Cu1—Cl290.81 (12)C10—C9—H9A121.5
N1—Cu1—Cl294.67 (10)C11—C10—C9121.3 (5)
Cl1—Cu1—Cl2113.23 (6)C11—C10—H10A119.3
Cl2i—Cu1—Cl286.86 (4)C9—C10—H10A119.3
Cu1i—Cl2—Cu193.14 (4)C10—C11—C12122.0 (5)
C1—N1—C15110.8 (4)C10—C11—H11A119.0
C1—N1—C5110.3 (3)C12—C11—H11A119.0
C15—N1—C5110.8 (3)C13—C12—C11117.1 (5)
C1—N1—Cu1103.7 (3)C13—C12—H12A121.5
C15—N1—Cu1114.5 (3)C11—C12—H12A121.5
C5—N1—Cu1106.4 (3)C12—C13—C8121.5 (5)
C4—N2—C2106.6 (4)C12—C13—C14130.5 (5)
C4—N2—Cu1136.2 (4)C8—C13—C14108.0 (4)
C2—N2—Cu1117.1 (3)O2—C14—N4124.4 (5)
C4—N3—C3108.8 (4)O2—C14—C13129.5 (5)
C4—N3—H3A125.6N4—C14—C13106.1 (4)
C3—N3—H3A125.6N1—C15—C16115.7 (4)
C7—N4—C14112.5 (4)N1—C15—H15A108.4
C7—N4—C6123.2 (4)C16—C15—H15A108.4
C14—N4—C6123.5 (4)N1—C15—H15B108.4
C24—N5—C17112.1 (4)C16—C15—H15B108.4
C24—N5—C16125.1 (4)H15A—C15—H15B107.4
C17—N5—C16122.8 (5)N5—C16—C15110.0 (4)
C2—C1—N1108.0 (4)N5—C16—H16A109.7
C2—C1—H1A110.1C15—C16—H16A109.7
N1—C1—H1A110.1N5—C16—H16B109.7
C2—C1—H1B110.1C15—C16—H16B109.7
N1—C1—H1B110.1H16A—C16—H16B108.2
H1A—C1—H1B108.4O3—C17—N5123.4 (6)
C3—C2—N2108.4 (5)O3—C17—C18130.4 (6)
C3—C2—C1134.8 (5)N5—C17—C18106.1 (5)
N2—C2—C1116.8 (4)C19—C18—C23122.7 (6)
N3—C3—C2106.1 (5)C19—C18—C17130.1 (6)
N3—C3—H3B127.0C23—C18—C17107.2 (5)
C2—C3—H3B127.0C18—C19—C20116.3 (7)
N2—C4—N3110.1 (5)C18—C19—H19A121.8
N2—C4—H4A125.0C20—C19—H19A121.8
N3—C4—H4A125.0C21—C20—C19121.7 (6)
N1—C5—C6110.9 (4)C21—C20—H20A119.2
N1—C5—H5A109.5C19—C20—H20A119.2
C6—C5—H5A109.5C20—C21—C22120.8 (7)
N1—C5—H5B109.5C20—C21—H21A119.6
C6—C5—H5B109.5C22—C21—H21A119.6
H5A—C5—H5B108.0C23—C22—C21118.7 (7)
N4—C6—C5112.7 (4)C23—C22—H22A120.7
N4—C6—H6A109.0C21—C22—H22A120.7
C5—C6—H6A109.0C22—C23—C18119.8 (5)
N4—C6—H6B109.0C22—C23—C24131.4 (6)
C5—C6—H6B109.0C18—C23—C24108.8 (5)
H6A—C6—H6B107.8O4—C24—N5125.6 (5)
O1—C7—N4125.1 (5)O4—C24—C23128.8 (5)
O1—C7—C8129.2 (5)N5—C24—C23105.6 (5)

Symmetry codes: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O3ii0.862.373.022 (6)133
C3—H3B···Cl1iii0.932.653.445 (6)144
C4—H4A···O2ii0.932.453.131 (7)131
C6—H6B···O20.972.512.870 (7)102
C15—H15A···Cl1i0.972.823.769 (5)165
C20—H20A···O1iv0.932.533.218 (9)131

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) x−1, y, z; (i) −x+2, −y, −z+1; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2236).

References

  • Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Higa, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304–3313.
  • Katsuki, I., Motoda, Y., Sunatsuki, Y., Matsumoto, N., Nakashima, T. & Kojima, M. (2002). J. Am. Chem. Soc. 124, 629–640. [PubMed]
  • Kong, L.-Y., Zhang, Z.-H., Zhu, H.-F., Kawaguchi, H., Okamura, T., Doi, M., Chu, Q., Sun, W.-Y. & Ueyama, N. (2005). Angew. Chem. Int. Ed. 44, 4352–4355. [PubMed]
  • Qi, Z.-P., Bai, Z.-S., Yuan, Q., Okamura, T., Cai, K., Su, Z., Sun, W.-Y. & Ueyama, N. (2008). Polyhedron, 27, 2672–2680.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, M.-M., Shi, Q.-Z., Zhang, Y.-N. & Li, Z.-X. (2009). Acta Cryst. E65, m744–m745. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography