PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3219.
Published online 2009 November 25. doi:  10.1107/S1600536809048417
PMCID: PMC2971962

4,4′-(Ethene-1,2-diyl)dipyridinium bis­[4-(2-carboxy­benzo­yl)benzoate]

Abstract

In the crystal structure of the title compound, C12H12N2 2+·2C15H9O5 , the cation has site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-o3219-efi1.jpg with the mid-point of C=C bond located on an inversion center. The two benzene rings of the anion are oriented at a dihedral angle 85.87 (6)°. In the crystal, inter­molecular O—H(...)O and N—H(...)O hydrogen bonds link the cations and anions into supra­molecular double chains, which are further connected into a three-dimensional network through inter­molecular C—H(...)O and π–π stacking between parallel pyridine rings [centroid–centroid distance = 3.4413 (12)Å] and between parallel benzene rings [centroid–centroid distance = 3.6116 (14)Å].

Related literature

For hydrogen bonding and π–π stacking in supra­molecular systems, see: Desiraju (2000 [triangle]); Ma et al. (2006 [triangle]); Dong et al. (2008 [triangle]); Huang & Qian (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3219-scheme1.jpg

Experimental

Crystal data

  • C12H12N2 2+·2C15H9O5
  • M r = 722.68
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3219-efi2.jpg
  • a = 7.1335 (13) Å
  • b = 9.4558 (17) Å
  • c = 13.206 (2) Å
  • α = 81.641 (2)°
  • β = 79.986 (2)°
  • γ = 71.260 (2)°
  • V = 826.9 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.29 × 0.14 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.983, T max = 0.994
  • 6357 measured reflections
  • 3055 independent reflections
  • 2212 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.115
  • S = 1.01
  • 3055 reflections
  • 250 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809048417/xu2637sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048417/xu2637Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (20773104), the Program for New Century Excellent Talents in China’s Universities (NCET-06-0891), the Key Project of the Ministry of Education of China (208143), the Important Project of Hubei Provincial Education Office (Z20091301) and the Natural Science Foundation of Hubei Province of China (2008CDB030).

supplementary crystallographic information

Comment

Crystal structure formation depends on many factors such as temperature, solvent, nature of ligands and metals among many others, hydrogen bonding is one of the dominant factors due to the fact that they are relatively strong, directional, and able to act in concert with each other. Organic supramolecular systems have been well documented in the literature( Desiraju, 2000; Ma et al., 2006; Dong et al.., 2008; Huang et al., 2005). We attempted to synthesize a ZnIIcomplex with the mixed ligand in hydrothermal synthesis conditions. However the title organic salt was obtained, its structure is reported here.

The asymmetric unit comprises one 4-(2-carboxybenzoyl)benzoate anion and half of diprotonated 4,4'-ethylenebis(pyridinium) cation (Fig 1). The dihedral angle between the two benzene rings of the anion is 85.87 (6)°, while the COOH(O4—C21—O5) group is co-planar with the phenyl ring and the deprotonated carboxylate COO(O1—C7—O2) group is slightly twisted with an angle of 31.93 (11)°. Intermolecular O—H···O and N—H···O hydrogen bonding links the ions into the supra-molecular double chains (Fig. 2). Furthermore, the double chains are stabilized by several distinct weak interactions which result in a three-dimensional supramolecular network: (a) π-π aromatic stacking between parallel pyridine rings [centroids distance = 3.4413 (12) Å]; (b) π-π aromatic stacking between parallel C15-benzene rings [centroids distance 3.6116 (14) Å]; (c) weak C—H···O hydrogen bonding (Table 1).

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. Zn(NO3)2.6H2O (0.0297 g, 0.1 mmol), 4,4'-ethylene-bis(pyridine) (0.0091 g, 0.05 mmol), 4-(2-carboxybenzoyl)benzoic acid (0.0270 g, 0.1 mmol) and water (15 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to 298 K, at which time colourless crystals were obtained. The crystal used for data collection was obtained directly from the reaction mixture on cooling without further re-crystallization.

Refinement

The H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C). The H atoms bonded to O and N atoms were located in a difference Fourier map and refined with O—H distance restraint of 0.90±0.02 Å and N—H distance restraint of 0.93±0.02 Å, Uiso(H) = 1.5Ueq(O,N).

Figures

Fig. 1.
The structure of (I) with the atom-numbering scheme showing displacement ellipsoids at the 50% probability level [symmetry code: (i) -x, 1-y, 2-z].
Fig. 2.
One-dimensional double chain connected by hydrogen bonds in the title complex.
Fig. 3.
Supramolecular network formed by hydrogen-bonding and π-π stacking ineractions.

Crystal data

C12H12N22+·2C15H9O5Z = 1
Mr = 722.68F(000) = 376
Triclinic, P1Dx = 1.451 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1335 (13) ÅCell parameters from 6357 reflections
b = 9.4558 (17) Åθ = 2.7–25.5°
c = 13.206 (2) ŵ = 0.11 mm1
α = 81.641 (2)°T = 293 K
β = 79.986 (2)°Prism, colorless
γ = 71.260 (2)°0.29 × 0.14 × 0.06 mm
V = 826.9 (3) Å3

Data collection

Bruker SMART CCD diffractometer3055 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.983, Tmax = 0.994k = −11→11
6357 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1979P] where P = (Fo2 + 2Fc2)/3
3055 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3708 (3)0.7481 (2)1.06116 (15)0.0344 (5)
H10.39410.79671.11180.041*
C20.2259 (3)0.6772 (2)1.08332 (15)0.0336 (5)
H20.15390.67651.14920.040*
C30.1860 (3)0.6061 (2)1.00748 (14)0.0304 (4)
C40.3013 (3)0.6087 (2)0.91086 (15)0.0340 (5)
H40.28030.56250.85810.041*
C50.4460 (3)0.6796 (2)0.89372 (15)0.0344 (5)
H5A0.52290.67990.82920.041*
C60.0296 (3)0.5327 (2)1.03236 (15)0.0349 (5)
H6−0.03400.53201.10010.042*
C7−0.1807 (3)−0.1223 (2)0.82078 (16)0.0358 (5)
C8−0.0337 (3)−0.0357 (2)0.78080 (15)0.0312 (4)
C90.0829 (3)−0.0123 (2)0.84717 (15)0.0347 (5)
H90.0702−0.05050.91610.042*
C100.2171 (3)0.0670 (2)0.81169 (15)0.0346 (5)
H100.29760.07870.85620.042*
C110.2329 (3)0.1293 (2)0.70999 (15)0.0308 (4)
C120.1136 (3)0.1081 (2)0.64353 (15)0.0348 (5)
H120.12100.15080.57550.042*
C13−0.0158 (3)0.0235 (2)0.67888 (16)0.0372 (5)
H13−0.09100.00660.63360.045*
C140.3742 (3)0.2184 (2)0.67376 (15)0.0344 (5)
C150.3715 (3)0.3001 (2)0.56687 (14)0.0308 (4)
C160.4987 (3)0.2238 (2)0.48697 (16)0.0392 (5)
H160.57560.12470.50040.047*
C170.5124 (3)0.2935 (2)0.38745 (16)0.0407 (5)
H170.59660.24090.33430.049*
C180.4011 (3)0.4412 (2)0.36712 (15)0.0388 (5)
H180.41150.48850.30040.047*
C190.2744 (3)0.5186 (2)0.44582 (14)0.0333 (5)
H190.20000.61810.43180.040*
C200.2565 (3)0.4497 (2)0.54578 (14)0.0306 (4)
C210.1207 (3)0.5313 (2)0.63185 (16)0.0351 (5)
N10.4789 (2)0.74805 (18)0.96750 (13)0.0323 (4)
H1A0.575 (2)0.797 (2)0.9512 (16)0.048*
O1−0.2576 (2)−0.11219 (16)0.91455 (11)0.0438 (4)
O2−0.2190 (2)−0.19672 (18)0.76131 (12)0.0511 (4)
O30.5013 (2)0.21679 (19)0.72479 (12)0.0567 (5)
O40.1007 (3)0.47083 (18)0.71866 (11)0.0581 (5)
O50.0256 (2)0.67303 (16)0.60536 (11)0.0434 (4)
H5−0.053 (3)0.715 (3)0.6618 (13)0.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0388 (11)0.0335 (11)0.0339 (11)−0.0137 (9)−0.0039 (9)−0.0075 (9)
C20.0361 (11)0.0372 (11)0.0282 (11)−0.0141 (9)0.0014 (8)−0.0052 (9)
C30.0339 (11)0.0290 (10)0.0304 (11)−0.0128 (8)−0.0044 (8)−0.0019 (8)
C40.0387 (11)0.0370 (11)0.0306 (11)−0.0172 (9)−0.0019 (9)−0.0069 (9)
C50.0389 (11)0.0386 (11)0.0276 (11)−0.0166 (9)0.0011 (9)−0.0045 (9)
C60.0382 (11)0.0430 (12)0.0274 (11)−0.0212 (9)0.0008 (8)−0.0017 (9)
C70.0335 (11)0.0321 (11)0.0429 (13)−0.0137 (9)0.0023 (9)−0.0080 (9)
C80.0278 (10)0.0265 (10)0.0377 (11)−0.0080 (8)0.0014 (8)−0.0059 (8)
C90.0391 (11)0.0334 (11)0.0302 (11)−0.0133 (9)−0.0009 (9)0.0017 (9)
C100.0362 (11)0.0371 (11)0.0328 (11)−0.0134 (9)−0.0081 (9)−0.0014 (9)
C110.0311 (10)0.0290 (10)0.0324 (11)−0.0108 (8)−0.0033 (8)−0.0005 (8)
C120.0380 (11)0.0372 (11)0.0312 (11)−0.0158 (9)−0.0046 (9)−0.0002 (9)
C130.0370 (11)0.0426 (12)0.0367 (12)−0.0172 (10)−0.0068 (9)−0.0047 (9)
C140.0370 (11)0.0361 (11)0.0334 (11)−0.0157 (9)−0.0055 (9)−0.0021 (9)
C150.0334 (10)0.0349 (11)0.0300 (11)−0.0193 (9)−0.0035 (8)−0.0024 (8)
C160.0413 (12)0.0354 (11)0.0429 (13)−0.0138 (10)−0.0047 (10)−0.0064 (10)
C170.0422 (12)0.0490 (13)0.0324 (12)−0.0173 (10)0.0045 (9)−0.0120 (10)
C180.0471 (12)0.0481 (13)0.0261 (11)−0.0237 (11)−0.0008 (9)−0.0024 (9)
C190.0371 (11)0.0365 (11)0.0306 (11)−0.0181 (9)−0.0029 (9)−0.0027 (9)
C200.0303 (10)0.0372 (11)0.0298 (10)−0.0179 (9)−0.0019 (8)−0.0051 (8)
C210.0390 (11)0.0384 (12)0.0344 (12)−0.0208 (10)−0.0029 (9)−0.0059 (9)
N10.0332 (9)0.0313 (9)0.0361 (9)−0.0170 (7)−0.0019 (7)−0.0020 (7)
O10.0517 (9)0.0507 (9)0.0365 (8)−0.0315 (8)0.0090 (7)−0.0094 (7)
O20.0518 (10)0.0595 (10)0.0518 (10)−0.0337 (8)0.0162 (7)−0.0255 (8)
O30.0625 (11)0.0779 (12)0.0471 (10)−0.0449 (10)−0.0238 (8)0.0134 (8)
O40.0851 (13)0.0520 (10)0.0288 (9)−0.0186 (9)0.0082 (8)−0.0017 (7)
O50.0459 (9)0.0397 (9)0.0406 (9)−0.0121 (7)0.0067 (7)−0.0084 (7)

Geometric parameters (Å, °)

C1—N11.339 (2)C11—C121.398 (3)
C1—C21.374 (3)C11—C141.488 (3)
C1—H10.9300C12—C131.388 (3)
C2—C31.398 (3)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.394 (3)C14—O31.215 (2)
C3—C61.462 (3)C14—C151.508 (3)
C4—C51.373 (3)C15—C161.387 (3)
C4—H40.9300C15—C201.404 (3)
C5—N11.336 (2)C16—C171.384 (3)
C5—H5A0.9300C16—H160.9300
C6—C6i1.318 (4)C17—C181.380 (3)
C6—H60.9300C17—H170.9300
C7—O21.244 (2)C18—C191.379 (3)
C7—O11.268 (2)C18—H180.9300
C7—C81.511 (3)C19—C201.388 (3)
C8—C131.381 (3)C19—H190.9300
C8—C91.392 (3)C20—C211.489 (3)
C9—C101.379 (3)C21—O41.211 (2)
C9—H90.9300C21—O51.320 (2)
C10—C111.387 (3)N1—H1A0.924 (17)
C10—H100.9300O5—H50.91 (2)
N1—C1—C2120.83 (18)C13—C12—H12119.9
N1—C1—H1119.6C11—C12—H12119.9
C2—C1—H1119.6C8—C13—C12120.46 (19)
C1—C2—C3120.38 (18)C8—C13—H13119.8
C1—C2—H2119.8C12—C13—H13119.8
C3—C2—H2119.8O3—C14—C11121.52 (18)
C4—C3—C2117.10 (17)O3—C14—C15119.46 (17)
C4—C3—C6123.40 (17)C11—C14—C15118.76 (17)
C2—C3—C6119.50 (17)C16—C15—C20119.20 (18)
C5—C4—C3119.87 (18)C16—C15—C14117.15 (18)
C5—C4—H4120.1C20—C15—C14123.56 (17)
C3—C4—H4120.1C17—C16—C15120.7 (2)
N1—C5—C4121.57 (18)C17—C16—H16119.7
N1—C5—H5A119.2C15—C16—H16119.7
C4—C5—H5A119.2C18—C17—C16120.02 (19)
C6i—C6—C3126.0 (2)C18—C17—H17120.0
C6i—C6—H6117.0C16—C17—H17120.0
C3—C6—H6117.0C19—C18—C17119.91 (19)
O2—C7—O1124.59 (18)C19—C18—H18120.0
O2—C7—C8119.16 (18)C17—C18—H18120.0
O1—C7—C8116.25 (18)C18—C19—C20120.85 (19)
C13—C8—C9119.21 (18)C18—C19—H19119.6
C13—C8—C7120.68 (18)C20—C19—H19119.6
C9—C8—C7120.10 (18)C19—C20—C15119.32 (18)
C10—C9—C8120.65 (18)C19—C20—C21121.69 (18)
C10—C9—H9119.7C15—C20—C21118.99 (17)
C8—C9—H9119.7O4—C21—O5123.48 (19)
C9—C10—C11120.41 (19)O4—C21—C20122.0 (2)
C9—C10—H10119.8O5—C21—C20114.51 (17)
C11—C10—H10119.8C5—N1—C1120.23 (17)
C10—C11—C12119.07 (17)C5—N1—H1A118.1 (14)
C10—C11—C14119.72 (17)C1—N1—H1A121.6 (14)
C12—C11—C14121.21 (17)C21—O5—H5109.1 (16)
C13—C12—C11120.14 (18)
N1—C1—C2—C3−1.3 (3)C10—C11—C14—C15−172.89 (18)
C1—C2—C3—C41.1 (3)C12—C11—C14—C156.5 (3)
C1—C2—C3—C6−179.33 (18)O3—C14—C15—C1683.1 (3)
C2—C3—C4—C5−0.2 (3)C11—C14—C15—C16−91.1 (2)
C6—C3—C4—C5−179.75 (19)O3—C14—C15—C20−93.4 (2)
C3—C4—C5—N1−0.6 (3)C11—C14—C15—C2092.4 (2)
C4—C3—C6—C6i−3.6 (4)C20—C15—C16—C17−0.1 (3)
C2—C3—C6—C6i176.9 (3)C14—C15—C16—C17−176.80 (18)
O2—C7—C8—C1331.7 (3)C15—C16—C17—C181.0 (3)
O1—C7—C8—C13−147.9 (2)C16—C17—C18—C19−0.8 (3)
O2—C7—C8—C9−149.50 (19)C17—C18—C19—C20−0.2 (3)
O1—C7—C8—C930.9 (3)C18—C19—C20—C151.0 (3)
C13—C8—C9—C10−1.0 (3)C18—C19—C20—C21179.95 (18)
C7—C8—C9—C10−179.80 (18)C16—C15—C20—C19−0.8 (3)
C8—C9—C10—C112.3 (3)C14—C15—C20—C19175.59 (17)
C9—C10—C11—C12−1.2 (3)C16—C15—C20—C21−179.81 (17)
C9—C10—C11—C14178.19 (18)C14—C15—C20—C21−3.4 (3)
C10—C11—C12—C13−1.1 (3)C19—C20—C21—O4178.18 (19)
C14—C11—C12—C13179.44 (18)C15—C20—C21—O4−2.9 (3)
C9—C8—C13—C12−1.4 (3)C19—C20—C21—O5−1.8 (3)
C7—C8—C13—C12177.40 (18)C15—C20—C21—O5177.15 (16)
C11—C12—C13—C82.5 (3)C4—C5—N1—C10.4 (3)
C10—C11—C14—O313.1 (3)C2—C1—N1—C50.5 (3)
C12—C11—C14—O3−167.5 (2)

Symmetry codes: (i) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.92 (2)1.65 (2)2.577 (2)176 (2)
O5—H5···O2iii0.91 (2)1.72 (2)2.629 (2)175 (2)
C1—H1···O3iv0.932.383.209 (3)149
C5—H5A···O2ii0.932.463.144 (3)130
C6—H6···O4i0.932.363.256 (2)163

Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+2; (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2637).

References

  • Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G.-R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745–3751.
  • Dong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, o2252. [PMC free article] [PubMed]
  • Huang, W. & Qian, H.-F. (2005). Acta Cryst. E61, o2050–o2052.
  • Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography