PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3170–o3171.
Published online 2009 November 21. doi:  10.1107/S1600536809049101
PMCID: PMC2971961

(S)-6-Chloro-4-cyclo­propyl­ethynyl-4-trifluoro­methyl-1H-3,1-benzoxazin-2(4H)-one

Abstract

Two independent mol­ecules comprise the crystallographic asymmetric unit in the title anti­retroviral agent Efavirenz, C14H9ClF3NO2, and these have noteworthy differences in conformation. The major difference relates to the orientation of the 2-cyclo­propyl­ethynyl residue relative to the six-membered heterocycle: this approaches an orthogonal disposition in mol­ecule a compared to a more flattened conformation in mol­ecule b, the difference being reflected in the Oring—C—C—Cethyne torsion angles of 65 (4) and 159 (5)°, respectively. The independent mol­ecules are connected via the eight-membered {(...)HNC (O)}2 amide synthon. Disorder is noted in the cyclo­propane ring of mol­ecule b in that two orientations of equal weight were discerned.

Related literature

For background to the use of Efavirenz, see: Adkins & Noble (1998 [triangle]); Gazzard (1999 [triangle]); de Clercq et al. (2009 [triangle]); Markowitz et al. (2009 [triangle]); Young et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3170-scheme1.jpg

Experimental

Crystal data

  • C14H9ClF3NO2
  • M r = 315.67
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3170-efi1.jpg
  • a = 8.1403 (4) Å
  • b = 13.5859 (11) Å
  • c = 24.962 (2) Å
  • V = 2760.6 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 120 K
  • 0.28 × 0.08 × 0.04 mm

Data collection

  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.917, T max = 0.988
  • 18370 measured reflections
  • 6099 independent reflections
  • 3675 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.127
  • S = 1.03
  • 6099 reflections
  • 395 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2598 Friedel pairs
  • Flack parameter: 0.14 (8)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049101/hg2596sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049101/hg2596Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The title anti-retroviral agent, Efavirenz, is a second-generation non-nucleoside inhibitor of HIV-1 reverse transcriptase (RT) that has been approved for use against HIV-1 infection. It is also called Sustiva or Stocrin and is manufactured by Bristol-Myers Squibb. Compared with first-generation drugs such as nevirapine, Efavirenz shows greater resilience to drug resistance mutations within HIV-1 RT. Effective treatment through inhibition of HIV reverse transcriptase has been shown for both nucleoside based inhibitors, such as azidothymidine, and non-nucleoside based inhibitors, such as Efavirenz. Efavirenz is also used in combination with other anti-retroviral agents as part of an expanded post-exposure prophylaxis regimen to reduce the risk of HIV infection in people exposed to a significant risk (Adkins & Noble, 1998; Gazzard, 1999; de Clercq et al., 2009; Markowitz et al., 2009; Young et al., 2009).

Two independent molecules comprise the asymmetric unit in (I), labelled a and b, Fig. 1. There are significant differences in conformation between the molecules and these relate primarily to the disposition of the 2-cyclopropylethynyl residue to the six-membered hetero-ring. As seen from Fig. 1, each hetero ring adopts a flattened half-chain conformation with the C4a and C4b atoms being the pivotal atoms. In molecule a, the C4a atom is orientated towards the same side of the six-membered ring as the 2-cyclopropylethynyl residue which occupies a position orthogonal to the six-membered ring as seen in the O3a/C4a/C10a/C11a torsion angle of 65 (4) °. In molecule b, the C4b atom and 2-cyclopropylethynyl residue lie to opposite sides of the six-membered ring and the comparable torsion angle is 159 (5) °. The independent molecules associate via the eight-membered {···HNC(O)}2 amide synthon, Table 1 and Fig. 1.

Experimental

Crystals used in the crystallographic study were grown from aqueous methanol solution of (I).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The amide-N H atoms were refined freely, see Table 1 for distances. Disorder was resolved for the cyclopropane ring of molecule b in that two positions, of equal weight (from refinement), were discerned for one of wing C atoms, C14b, so that each component of the disordered ring shared two atoms, C12b and C13b.

Figures

Fig. 1.
Molecular structure (I) showing the hydrogen bonding (orange dashed lines) between the two molecules comprising the crystallographic asymmetric unit, the atom-labelling scheme, and displacement ellipsoids at the 50% probability level. Only one component ...

Crystal data

C14H9ClF3NO2F(000) = 1280
Mr = 315.67Dx = 1.519 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3202 reflections
a = 8.1403 (4) Åθ = 2.9–27.5°
b = 13.5859 (11) ŵ = 0.31 mm1
c = 24.962 (2) ÅT = 120 K
V = 2760.6 (3) Å3Rod, colourless
Z = 80.28 × 0.08 × 0.04 mm

Data collection

Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer6099 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3675 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
[var phi] and ω scansh = −10→6
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −10→17
Tmin = 0.917, Tmax = 0.988l = −32→30
18370 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0117P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6099 reflectionsΔρmax = 0.26 e Å3
395 parametersΔρmin = −0.25 e Å3
5 restraintsAbsolute structure: Flack (1983), 2598 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.14 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1A−0.51005 (11)0.32715 (8)0.73151 (5)0.0602 (3)
O2A0.3501 (3)0.5959 (2)0.74717 (10)0.0507 (8)
O3A0.1228 (3)0.59292 (19)0.69880 (10)0.0370 (6)
N1A0.1615 (4)0.4768 (2)0.76479 (13)0.0358 (8)
H1A0.207 (5)0.457 (3)0.7936 (15)0.043*
F1A−0.0025 (3)0.65810 (18)0.60948 (9)0.0526 (6)
F2A−0.1987 (3)0.55204 (18)0.60690 (8)0.0512 (6)
F3A−0.1848 (3)0.65650 (16)0.67151 (8)0.0497 (6)
C2A0.2190 (5)0.5547 (3)0.73799 (15)0.0377 (9)
C4A0.0094 (5)0.5259 (3)0.67159 (14)0.0348 (9)
C4AA−0.0859 (4)0.4654 (3)0.71220 (14)0.0334 (9)
C5A−0.2433 (4)0.4314 (3)0.70474 (15)0.0343 (9)
H5A−0.30420.45030.67390.045*
C6A−0.3118 (4)0.3698 (3)0.74239 (17)0.0434 (10)
C7A−0.2254 (4)0.3397 (3)0.78715 (16)0.0426 (10)
H7A−0.27260.29480.81190.055*
C8A−0.0678 (4)0.3764 (3)0.79520 (16)0.0369 (9)
H8A−0.00770.35830.82630.048*
C8AA0.0015 (4)0.4393 (3)0.75789 (14)0.0326 (9)
C9A−0.0952 (5)0.5989 (3)0.63969 (15)0.0398 (10)
C10A0.1021 (4)0.4604 (3)0.63575 (16)0.0366 (9)
C11A0.1844 (5)0.4037 (3)0.61164 (16)0.0411 (10)
C12A0.2841 (5)0.3343 (3)0.58197 (16)0.0507 (11)
H12A0.26960.26350.59190.061*
C13A0.3236 (5)0.3538 (3)0.52437 (17)0.0530 (12)
H13A0.32920.29670.49980.064*
H13B0.28020.41500.50810.064*
C14A0.4533 (5)0.3634 (4)0.56533 (18)0.0597 (13)
H14A0.49090.43060.57460.072*
H14B0.54000.31230.56630.072*
Cl1B1.21317 (12)0.70229 (9)0.86981 (4)0.0532 (3)
O2B0.3568 (3)0.4274 (2)0.85483 (11)0.0607 (9)
O3B0.5822 (3)0.4297 (2)0.90321 (11)0.0470 (8)
N1B0.5495 (4)0.5424 (3)0.83487 (13)0.0392 (9)
H1C0.498 (5)0.566 (3)0.8061 (15)0.047*
F1B0.7286 (3)0.60158 (18)1.00057 (9)0.0534 (6)
F2B0.5402 (3)0.49001 (19)1.00565 (9)0.0612 (7)
F3B0.5136 (3)0.61081 (19)0.95046 (9)0.0539 (6)
C2B0.4865 (5)0.4670 (3)0.86305 (16)0.0445 (10)
C4B0.7093 (5)0.4883 (3)0.92846 (15)0.0388 (9)
C4BA0.7914 (4)0.5559 (3)0.88837 (14)0.0333 (9)
C5B0.9506 (4)0.5922 (3)0.89599 (15)0.0360 (9)
H5C1.01240.57290.92650.047*
C6B1.0174 (4)0.6561 (3)0.85898 (15)0.0375 (9)
C7B0.9312 (4)0.6826 (3)0.81354 (15)0.0372 (10)
H7C0.97800.72710.78850.048*
C8B0.7766 (4)0.6439 (3)0.80484 (15)0.0356 (9)
H8C0.71820.65980.77310.046*
C8BA0.7071 (4)0.5820 (3)0.84245 (15)0.0344 (9)
C9B0.6220 (5)0.5474 (3)0.97213 (15)0.0440 (11)
C10B0.8249 (5)0.4199 (3)0.95367 (16)0.0461 (11)
C11B0.9272 (6)0.3707 (3)0.97389 (19)0.0599 (13)
C12B1.0542 (6)0.3081 (4)0.9974 (2)0.0782 (17)
H12C1.02190.23861.00520.094*0.50
H12E1.07980.24450.97910.094*0.50
C13B1.1770 (9)0.3495 (4)1.0313 (4)0.120 (3)
H13C1.22250.30751.06010.144*0.50
H13D1.16780.42021.04040.144*0.50
H13E1.18760.42211.03120.144*0.50
H13F1.28340.31431.03320.144*0.50
C14B1.2189 (13)0.3225 (12)0.9731 (6)0.135 (6)0.50
H14C1.23290.37670.94700.162*0.50
H14D1.28780.26370.96670.162*0.50
C14C1.0387 (19)0.3074 (14)1.0626 (5)0.165 (9)0.50
H14E0.96000.35321.07960.198*0.50
H14F1.05670.24441.08170.198*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.0346 (5)0.0526 (7)0.0935 (9)−0.0044 (5)0.0009 (5)0.0029 (7)
O2A0.0581 (18)0.0487 (19)0.0454 (18)−0.0176 (14)−0.0172 (14)0.0066 (15)
O3A0.0439 (15)0.0350 (17)0.0321 (15)−0.0036 (12)−0.0100 (12)0.0013 (13)
N1A0.0408 (19)0.034 (2)0.033 (2)−0.0030 (14)−0.0090 (14)0.0037 (17)
F1A0.0536 (13)0.0630 (16)0.0411 (14)0.0041 (13)0.0026 (11)0.0163 (13)
F2A0.0464 (13)0.0691 (17)0.0380 (13)0.0053 (12)−0.0114 (11)−0.0007 (13)
F3A0.0596 (14)0.0504 (15)0.0393 (13)0.0158 (12)0.0032 (10)0.0000 (12)
C2A0.046 (2)0.037 (2)0.031 (2)−0.004 (2)−0.0032 (19)0.001 (2)
C4A0.036 (2)0.039 (2)0.029 (2)0.0024 (18)−0.0054 (16)−0.0042 (19)
C4AA0.040 (2)0.031 (2)0.030 (2)0.0059 (17)0.0014 (16)−0.0010 (19)
C5A0.031 (2)0.034 (2)0.037 (2)0.0050 (16)−0.0057 (16)−0.0082 (19)
C6A0.039 (2)0.036 (3)0.055 (3)0.0028 (18)0.005 (2)−0.006 (2)
C7A0.045 (2)0.033 (2)0.049 (3)0.0018 (19)0.011 (2)−0.003 (2)
C8A0.044 (2)0.032 (2)0.035 (2)0.0074 (17)0.0016 (18)0.0007 (19)
C8AA0.036 (2)0.031 (2)0.030 (2)0.0026 (17)0.0033 (17)−0.0059 (18)
C9A0.046 (2)0.044 (3)0.030 (2)0.008 (2)0.0004 (18)0.002 (2)
C10A0.034 (2)0.041 (3)0.034 (2)−0.0009 (18)−0.0027 (17)−0.001 (2)
C11A0.040 (2)0.044 (3)0.039 (2)−0.001 (2)−0.0028 (19)0.005 (2)
C12A0.061 (3)0.040 (3)0.051 (3)0.002 (2)0.018 (2)0.005 (2)
C13A0.054 (3)0.055 (3)0.049 (3)0.005 (2)0.012 (2)−0.001 (2)
C14A0.042 (3)0.068 (4)0.070 (3)0.012 (2)0.007 (2)0.003 (3)
Cl1B0.0405 (6)0.0650 (8)0.0541 (7)−0.0059 (5)−0.0014 (5)0.0164 (6)
O2B0.0549 (19)0.073 (2)0.054 (2)−0.0245 (17)−0.0208 (15)0.0135 (17)
O3B0.0509 (16)0.0488 (19)0.0415 (18)−0.0135 (14)−0.0137 (13)0.0082 (15)
N1B0.045 (2)0.043 (2)0.029 (2)0.0009 (15)−0.0112 (14)0.0047 (18)
F1B0.0537 (14)0.0714 (17)0.0350 (12)−0.0047 (12)−0.0044 (11)−0.0097 (13)
F2B0.0564 (15)0.088 (2)0.0389 (15)−0.0101 (13)0.0021 (11)0.0188 (14)
F3B0.0457 (13)0.0757 (18)0.0402 (14)0.0112 (13)−0.0009 (11)0.0075 (13)
C2B0.048 (3)0.052 (3)0.034 (2)−0.006 (2)−0.016 (2)0.004 (2)
C4B0.039 (2)0.040 (2)0.037 (2)−0.0039 (19)−0.0116 (18)0.002 (2)
C4BA0.038 (2)0.031 (2)0.031 (2)0.0003 (18)0.0004 (17)−0.0039 (18)
C5B0.037 (2)0.039 (3)0.032 (2)0.0036 (17)−0.0053 (17)0.006 (2)
C6B0.034 (2)0.041 (2)0.037 (2)0.0032 (18)−0.0011 (17)0.003 (2)
C7B0.048 (2)0.032 (2)0.032 (2)0.0035 (19)0.0070 (17)0.0009 (19)
C8B0.046 (2)0.034 (2)0.026 (2)0.0097 (18)0.0012 (17)0.0017 (18)
C8BA0.032 (2)0.038 (2)0.033 (2)0.0078 (17)−0.0056 (17)−0.0085 (19)
C9B0.045 (3)0.062 (3)0.025 (2)−0.006 (2)−0.0056 (19)0.010 (2)
C10B0.052 (3)0.046 (3)0.040 (3)−0.012 (2)−0.010 (2)0.011 (2)
C11B0.066 (3)0.049 (3)0.064 (3)−0.012 (2)−0.022 (3)0.016 (3)
C12B0.094 (4)0.044 (3)0.096 (4)0.002 (3)−0.042 (3)0.022 (3)
C13B0.129 (6)0.061 (4)0.169 (8)0.032 (4)−0.099 (6)−0.027 (5)
C14B0.071 (8)0.197 (17)0.136 (13)0.054 (9)0.004 (8)0.086 (13)
C14C0.169 (15)0.24 (2)0.081 (10)0.143 (16)0.016 (9)0.061 (12)

Geometric parameters (Å, °)

Cl1A—C6A1.736 (4)N1B—C2B1.344 (5)
O2A—C2A1.227 (4)N1B—C8BA1.404 (5)
O3A—C2A1.356 (4)N1B—H1C0.89 (4)
O3A—C4A1.464 (4)F1B—C9B1.341 (4)
N1A—C2A1.337 (5)F2B—C9B1.323 (4)
N1A—C8AA1.409 (5)F3B—C9B1.346 (4)
N1A—H1A0.85 (4)C4B—C10B1.465 (5)
F1A—C9A1.336 (4)C4B—C4BA1.514 (5)
F2A—C9A1.336 (4)C4B—C9B1.529 (6)
F3A—C9A1.333 (4)C4BA—C8BA1.383 (5)
C4A—C10A1.470 (6)C4BA—C5B1.400 (5)
C4A—C4AA1.518 (5)C5B—C6B1.379 (5)
C4A—C9A1.531 (5)C5B—H5C0.9500
C4AA—C5A1.375 (5)C6B—C7B1.381 (5)
C4AA—C8AA1.390 (5)C7B—C8B1.381 (5)
C5A—C6A1.377 (5)C7B—H7C0.9500
C5A—H5A0.9500C8B—C8BA1.381 (5)
C6A—C7A1.382 (5)C8B—H8C0.9500
C7A—C8A1.391 (5)C10B—C11B1.181 (5)
C7A—H7A0.9500C11B—C12B1.461 (6)
C8A—C8AA1.384 (5)C12B—C13B1.425 (7)
C8A—H8A0.9500C12B—C14B1.484 (11)
C10A—C11A1.186 (5)C12B—C14C1.632 (12)
C11A—C12A1.448 (6)C12B—H12C1.0000
C12A—C14A1.492 (5)C12B—H12E1.0000
C12A—C13A1.497 (5)C13B—C14C1.485 (14)
C12A—H12A1.0000C13B—C14B1.536 (13)
C13A—C14A1.475 (6)C13B—H13C0.9900
C13A—H13A0.9900C13B—H13D0.9900
C13A—H13B0.9900C13B—H13E0.9900
C14A—H14A0.9900C13B—H13F0.9900
C14A—H14B0.9900C14B—H14C0.9900
Cl1B—C6B1.734 (4)C14B—H14D0.9900
O2B—C2B1.202 (5)C14C—H14E0.9900
O3B—C2B1.368 (4)C14C—H14F0.9900
O3B—C4B1.450 (4)
C2A—O3A—C4A117.4 (3)C5B—C4BA—C4B122.2 (3)
C2A—N1A—C8AA123.3 (3)C6B—C5B—C4BA119.7 (3)
C2A—N1A—H1A121 (3)C6B—C5B—H5C120.1
C8AA—N1A—H1A113 (3)C4BA—C5B—H5C120.1
O2A—C2A—N1A124.9 (4)C5B—C6B—C7B120.9 (3)
O2A—C2A—O3A117.6 (3)C5B—C6B—Cl1B119.1 (3)
N1A—C2A—O3A117.5 (3)C7B—C6B—Cl1B120.0 (3)
O3A—C4A—C10A109.6 (3)C8B—C7B—C6B119.5 (4)
O3A—C4A—C4AA110.4 (3)C8B—C7B—H7C120.2
C10A—C4A—C4AA110.0 (3)C6B—C7B—H7C120.2
O3A—C4A—C9A100.9 (3)C7B—C8B—C8BA119.9 (3)
C10A—C4A—C9A111.1 (3)C7B—C8B—H8C120.1
C4AA—C4A—C9A114.4 (3)C8BA—C8B—H8C120.1
C5A—C4AA—C8AA120.1 (3)C8B—C8BA—C4BA121.1 (3)
C5A—C4AA—C4A124.6 (3)C8B—C8BA—N1B121.1 (3)
C8AA—C4AA—C4A115.1 (3)C4BA—C8BA—N1B117.8 (3)
C4AA—C5A—C6A119.3 (3)F2B—C9B—F1B108.3 (3)
C4AA—C5A—H5A120.3F2B—C9B—F3B107.5 (3)
C6A—C5A—H5A120.3F1B—C9B—F3B106.6 (4)
C5A—C6A—C7A121.7 (4)F2B—C9B—C4B112.0 (4)
C5A—C6A—Cl1A118.2 (3)F1B—C9B—C4B111.4 (3)
C7A—C6A—Cl1A120.1 (3)F3B—C9B—C4B110.8 (3)
C6A—C7A—C8A118.7 (4)C11B—C10B—C4B174.7 (4)
C6A—C7A—H7A120.6C10B—C11B—C12B178.3 (6)
C8A—C7A—H7A120.6C13B—C12B—C11B120.4 (5)
C8AA—C8A—C7A120.0 (4)C13B—C12B—C14B63.7 (6)
C8AA—C8A—H8A120.0C11B—C12B—C14B113.4 (6)
C7A—C8A—H8A120.0C13B—C12B—C14C57.7 (6)
C8A—C8AA—C4AA120.1 (4)C11B—C12B—C14C110.5 (7)
C8A—C8AA—N1A121.2 (3)C14B—C12B—C14C118.6 (8)
C4AA—C8AA—N1A118.7 (3)C13B—C12B—H12C116.2
F3A—C9A—F1A107.0 (3)C11B—C12B—H12C116.2
F3A—C9A—F2A107.4 (3)C14B—C12B—H12C116.2
F1A—C9A—F2A107.3 (3)C14C—C12B—H12C77.3
F3A—C9A—C4A112.0 (3)C13B—C12B—H12E117.8
F1A—C9A—C4A111.7 (3)C11B—C12B—H12E117.8
F2A—C9A—C4A111.2 (3)C14B—C12B—H12E74.9
C11A—C10A—C4A173.0 (4)C14C—C12B—H12E117.8
C10A—C11A—C12A179.7 (5)H12C—C12B—H12E47.7
C11A—C12A—C14A119.2 (4)C12B—C13B—C14C68.2 (6)
C11A—C12A—C13A119.8 (4)C12B—C13B—C14B60.0 (5)
C14A—C12A—C13A59.2 (3)C14C—C13B—C14B125.0 (9)
C11A—C12A—H12A115.7C12B—C13B—H13C117.8
C14A—C12A—H12A115.7C14C—C13B—H13C71.3
C13A—C12A—H12A115.7C14B—C13B—H13C117.8
C14A—C13A—C12A60.3 (3)C12B—C13B—H13D117.8
C14A—C13A—H13A117.7C14C—C13B—H13D101.3
C12A—C13A—H13A117.7C14B—C13B—H13D117.8
C14A—C13A—H13B117.7H13C—C13B—H13D114.9
C12A—C13A—H13B117.7C12B—C13B—H13E116.9
H13A—C13A—H13B114.9C14C—C13B—H13E116.9
C13A—C14A—C12A60.6 (3)C14B—C13B—H13E102.4
C13A—C14A—H14A117.7H13C—C13B—H13E123.0
C12A—C14A—H14A117.7C12B—C13B—H13F116.9
C13A—C14A—H14B117.7C14C—C13B—H13F116.9
C12A—C14A—H14B117.7C14B—C13B—H13F74.7
H14A—C14A—H14B114.8H13C—C13B—H13F50.2
C2B—O3B—C4B121.4 (3)H13D—C13B—H13F121.6
C2B—N1B—C8BA124.8 (4)H13E—C13B—H13F113.9
C2B—N1B—H1C121 (3)C12B—C14B—C13B56.3 (5)
C8BA—N1B—H1C114 (3)C12B—C14B—H14C118.1
O2B—C2B—N1B126.0 (4)C13B—C14B—H14C118.1
O2B—C2B—O3B117.3 (4)C12B—C14B—H14D118.1
N1B—C2B—O3B116.7 (4)C13B—C14B—H14D118.1
O3B—C4B—C10B107.3 (3)H14C—C14B—H14D115.3
O3B—C4B—C4BA111.2 (3)C13B—C14C—C12B54.2 (5)
C10B—C4B—C4BA112.6 (3)C13B—C14C—H14E118.3
O3B—C4B—C9B105.5 (3)C12B—C14C—H14E118.3
C10B—C4B—C9B109.0 (3)C13B—C14C—H14F118.3
C4BA—C4B—C9B111.0 (3)C12B—C14C—H14F118.3
C8BA—C4BA—C5B118.8 (3)H14E—C14C—H14F115.6
C8BA—C4BA—C4B119.0 (3)
C8AA—N1A—C2A—O2A171.5 (4)C2B—O3B—C4B—C4BA−35.7 (5)
C8AA—N1A—C2A—O3A−6.4 (5)C2B—O3B—C4B—C9B84.6 (4)
C4A—O3A—C2A—O2A153.8 (3)O3B—C4B—C4BA—C8BA23.4 (5)
C4A—O3A—C2A—N1A−28.2 (5)C10B—C4B—C4BA—C8BA143.8 (3)
C2A—O3A—C4A—C10A−73.1 (4)C9B—C4B—C4BA—C8BA−93.6 (4)
C2A—O3A—C4A—C4AA48.2 (4)O3B—C4B—C4BA—C5B−156.0 (3)
C2A—O3A—C4A—C9A169.6 (3)C10B—C4B—C4BA—C5B−35.6 (5)
O3A—C4A—C4AA—C5A149.0 (3)C9B—C4B—C4BA—C5B86.9 (4)
C10A—C4A—C4AA—C5A−89.9 (4)C8BA—C4BA—C5B—C6B2.6 (5)
C9A—C4A—C4AA—C5A36.0 (5)C4B—C4BA—C5B—C6B−177.9 (3)
O3A—C4A—C4AA—C8AA−35.3 (4)C4BA—C5B—C6B—C7B−1.9 (6)
C10A—C4A—C4AA—C8AA85.8 (4)C4BA—C5B—C6B—Cl1B178.7 (3)
C9A—C4A—C4AA—C8AA−148.3 (3)C5B—C6B—C7B—C8B−0.6 (6)
C8AA—C4AA—C5A—C6A−1.3 (5)Cl1B—C6B—C7B—C8B178.8 (3)
C4A—C4AA—C5A—C6A174.1 (3)C6B—C7B—C8B—C8BA2.3 (5)
C4AA—C5A—C6A—C7A−1.1 (6)C7B—C8B—C8BA—C4BA−1.6 (5)
C4AA—C5A—C6A—Cl1A−179.4 (3)C7B—C8B—C8BA—N1B179.4 (3)
C5A—C6A—C7A—C8A2.8 (6)C5B—C4BA—C8BA—C8B−0.8 (5)
Cl1A—C6A—C7A—C8A−179.0 (3)C4B—C4BA—C8BA—C8B179.7 (3)
C6A—C7A—C8A—C8AA−2.1 (5)C5B—C4BA—C8BA—N1B178.2 (3)
C7A—C8A—C8AA—C4AA−0.3 (6)C4B—C4BA—C8BA—N1B−1.3 (5)
C7A—C8A—C8AA—N1A−179.4 (3)C2B—N1B—C8BA—C8B165.5 (4)
C5A—C4AA—C8AA—C8A2.0 (5)C2B—N1B—C8BA—C4BA−13.5 (5)
C4A—C4AA—C8AA—C8A−173.8 (3)O3B—C4B—C9B—F2B55.3 (4)
C5A—C4AA—C8AA—N1A−178.9 (3)C10B—C4B—C9B—F2B−59.6 (4)
C4A—C4AA—C8AA—N1A5.3 (5)C4BA—C4B—C9B—F2B175.8 (3)
C2A—N1A—C8AA—C8A−163.0 (4)O3B—C4B—C9B—F1B176.8 (3)
C2A—N1A—C8AA—C4AA17.9 (5)C10B—C4B—C9B—F1B61.9 (4)
O3A—C4A—C9A—F3A−66.2 (4)C4BA—C4B—C9B—F1B−62.7 (4)
C10A—C4A—C9A—F3A177.7 (3)O3B—C4B—C9B—F3B−64.7 (4)
C4AA—C4A—C9A—F3A52.4 (4)C10B—C4B—C9B—F3B−179.6 (3)
O3A—C4A—C9A—F1A53.8 (4)C4BA—C4B—C9B—F3B55.8 (4)
C10A—C4A—C9A—F1A−62.3 (4)O3B—C4B—C10B—C11B159 (5)
C4AA—C4A—C9A—F1A172.4 (3)C4BA—C4B—C10B—C11B36 (5)
O3A—C4A—C9A—F2A173.6 (3)C9B—C4B—C10B—C11B−88 (5)
C10A—C4A—C9A—F2A57.5 (4)C4B—C10B—C11B—C12B−107 (17)
C4AA—C4A—C9A—F2A−67.8 (4)C10B—C11B—C12B—C13B140 (18)
O3A—C4A—C10A—C11A65 (4)C10B—C11B—C12B—C14B67 (18)
C4AA—C4A—C10A—C11A−57 (4)C10B—C11B—C12B—C14C−157 (18)
C9A—C4A—C10A—C11A176 (3)C11B—C12B—C13B—C14C96.3 (9)
C4A—C10A—C11A—C12A147 (100)C14B—C12B—C13B—C14C−160.8 (10)
C10A—C11A—C12A—C14A125 (100)C11B—C12B—C13B—C14B−103.0 (8)
C10A—C11A—C12A—C13A56 (97)C14C—C12B—C13B—C14B160.8 (10)
C11A—C12A—C13A—C14A108.2 (5)C11B—C12B—C14B—C13B113.6 (6)
C11A—C12A—C14A—C13A−109.2 (4)C14C—C12B—C14B—C13B−18.5 (10)
C8BA—N1B—C2B—O2B−174.4 (4)C14C—C13B—C14B—C12B21.9 (10)
C8BA—N1B—C2B—O3B2.6 (6)C14B—C13B—C14C—C12B−20.4 (9)
C4B—O3B—C2B—O2B−158.9 (4)C11B—C12B—C14C—C13B−113.7 (6)
C4B—O3B—C2B—N1B23.9 (5)C14B—C12B—C14C—C13B19.7 (10)
C2B—O3B—C4B—C10B−159.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2B0.85 (4)2.00 (4)2.834 (4)167 (4)
N1B—H1C···O2A0.89 (4)1.94 (4)2.820 (4)168 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2596).

References

  • Adkins, J. C. & Noble, S. (1998). Drugs, 56, 1055–1064. [PubMed]
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Clercq, E. de (2009). Rev. Med. Virol. 19, 287–299. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gazzard, B. G. (1999). Int. J. Clin. Pract. 53, 60–64. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Markowitz, M., Nguyen, B. Y., Gotuzzo, E., Mendo, F., Ratanasuwan, W., Kovacs, C., Prada, G., Morales-Ramirez, J. O., Crumpacker, C. S., Isaacs, R. D., Campbell, H., Strohmaier, K. M., Wan, H., Danovich, R. M. & Teppler, H. (2009). J. Acquir. Immune Defic. Syndr. 52, 350–356. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Young, J., Bucher, H. C., Guenthard, H. F., Rickenbach, M., Fux, C. A., Hirschel, B., Cavassini, M., Vernazza, P., Bernasconi, E. & Battegay, M. (2009). Antivir. Ther. 14, 771–779. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography